Skip to main content
Log in

Facile synthesis of Pd-doped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The precursors (ZnSn(OH)6) of ZnSnO3 hierarchical microspheres have been synthesized by an facile chemical precipitation method at room temperature followed by self-assembly, and then, the precursors were converted into hierarchical ZnSnO3 microspheres composed of nanoparticles by annealing. The structure and morphologies of the products were characterized by a series of analysis methods. The sensing performance of the ZnSnO3 microspheres to formaldehyde was studied, and the sensing mechanism was also discussed in detail. The sensing tests indicate that doping Pd can significantly improve the sensing properties of ZnSnO3 to formaldehyde, especially when the doping proportion of Pd is 4 wt%. In addition, the material has low detection limit of 100 ppb and shows linear response to formaldehyde in the concentration range from 0.1 to 10 ppm at operating temperature of 103 °C. All the above properties indicate that the 4 wt% Pd-doped composite is an attractive sensing material for detection of formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Chen EX, Yang H, Zhang J (2014) Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg Chem 53(11):5411–5413. https://doi.org/10.1021/ic500474j

    Article  CAS  Google Scholar 

  2. Ma Y, Zhao C, Zhan Y, Li J, Zhang Z, Li G (2015) Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO(3)/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry. J Sep Sci 38(8):1388–1393. https://doi.org/10.1002/jssc.201400951

    Article  CAS  Google Scholar 

  3. Zheng Y, Wang J, Yao P (2011) Formaldehyde sensing properties of electrospun NiO-doped SnO2 nanofibers. Sens Actuators B Chem 156(2):723–730. https://doi.org/10.1016/j.snb.2011.02.026

    Article  CAS  Google Scholar 

  4. Ju DX, Xu HY, Xu Q, Gong HB, Qiu ZW, Guo J, Zhang J, Cao BQ (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem 215:39–44. https://doi.org/10.1016/j.snb.2015.03.015

    Article  CAS  Google Scholar 

  5. Xu C, Sun W, Cao L, Yang J (2016) Highly efficient Pd-doped ferrite spinel catalysts for the selective catalytic reduction of NO with H2 at low temperature. Chem Eng J 289:231–238. https://doi.org/10.1016/j.cej.2015.12.085

    Article  CAS  Google Scholar 

  6. Xiao L, Shu S, Liu S (2015) A facile synthesis of Pd-doped SnO2 hollow microcubes with enhanced sensing performance. Sens Actuators B Chem 221:120–126. https://doi.org/10.1016/j.snb.2015.06.099

    Article  CAS  Google Scholar 

  7. Meng D, Yamazaki T, Kikuta T (2014) Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires. Sens Actuators B Chem 190:838–843. https://doi.org/10.1016/j.snb.2013.09.015

    Article  CAS  Google Scholar 

  8. Wang C, Cheng X, Zhou X, Sun P, Hu X, Shimanoe K, Lu G, Yamazoe N (2014) Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl Mater Interfaces 6(15):12031–12037. https://doi.org/10.1021/am501063z

    Article  CAS  Google Scholar 

  9. Shi L, Cui J, Zhao F, Wang D, Xie T, Lin Y (2015) High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. Phys Chem Chem Phys 17(46):31316–31323. https://doi.org/10.1039/C5CP05935F

    Article  CAS  Google Scholar 

  10. Dong C, Liu X, Han B, Deng S, Xiao X, Wang Y (2016) Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens Actuators B Chem 224:193–200. https://doi.org/10.1016/j.snb.2015.09.107

    Article  CAS  Google Scholar 

  11. Yoosefian M, Raissi H, Mola A (2015) The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sens Actuators B Chem 212:55–62. https://doi.org/10.1016/j.snb.2015.02.004

    Article  CAS  Google Scholar 

  12. Wadkar P, Bauskar D, Patil P (2013) High performance H2 sensor based on ZnSnO3 cubic crystallites synthesized by a hydrothermal method. Talanta 105:327–332. https://doi.org/10.1016/j.talanta.2012.10.051

    Article  CAS  Google Scholar 

  13. Zeng Y, Y Bing, Liu C, W Zheng, G Zou (2012) Self-assembly of hierarchical ZnSnO3–SnO2 nanoflakes and their gas sensing properties. Trans Nonferrous Met Soc China 22(10):2451–2458. https://doi.org/10.1016/s1003-6326(11)61484-2

    Article  CAS  Google Scholar 

  14. Men H, Gao P, Zhou B, Chen Y, Zhu C, Xiao G, Wang L, Zhang M (2010) Fast synthesis of ultra-thin ZnSnO3 nanorods with high ethanol sensing properties. Chem Commun (Camb) 46(40):7581–7583. https://doi.org/10.1039/c0cc02222e

    Article  CAS  Google Scholar 

  15. Geng B, Fang C, Zhan F, Yu N (2008) Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties. Small 4(9):1337–1343. https://doi.org/10.1002/smll.200701177

    Article  CAS  Google Scholar 

  16. Han L, Liu J, Wang Z, Zhang K, Luo H, Xu B, Zou X, Zheng X, Ye B, Yu X (2012) Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties. CrystEngComm 14(10):3380–3386. https://doi.org/10.1039/c2ce06583e

    Article  CAS  Google Scholar 

  17. Cao J, Wang S, Zhang H (2017) Controllable synthesis of zinc oxide hierarchical architectures and their excellent formaldehyde gas sensing performances. Mater Lett 202:44–47. https://doi.org/10.1016/j.matlet.2017.05.076

    Article  CAS  Google Scholar 

  18. Xing X, Xiao X, Wang L, Wang Y (2017) Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens Actuators B Chem 247:797–806. https://doi.org/10.1016/j.snb.2017.03.077

    Article  CAS  Google Scholar 

  19. Zhang W, Cheng X, Zhang X, Xu Y, Gao S, Zhao H, Huo L (2017) High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO2 at low temperature. Sens Actuators B Chem 247:664–672. https://doi.org/10.1016/j.snb.2017.03.099

    Article  CAS  Google Scholar 

  20. Park HJ, Kim J, Choi NJ, Song H, Lee DS (2016) Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl Mater Interfaces 8(5):3233–3240. https://doi.org/10.1021/acsami.5b10862

    Article  CAS  Google Scholar 

  21. Hussain S, Liu T, Javed MS, Aslam N, Zeng W (2017) Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties. Sens Actuators B Chem 239:1243–1250. https://doi.org/10.1016/j.snb.2016.09.128

    Article  CAS  Google Scholar 

  22. Chen H, Hu J, Li GD, Gao Q, Wei C, Zou X (2017) Porous Ga–In bimetallic oxide nanofibers with controllable structures for ultrasensitive and selective detection of formaldehyde. ACS Appl Mater Interfaces 9(5):4692–4700. https://doi.org/10.1021/acsami.6b13520

    Article  CAS  Google Scholar 

  23. Ding C, Ma Y, Lai X, Yang Q, Xue P, Hu F, Geng W (2017) Ordered large-pore mesoporous Cr2O3 with ultrathin framework for formaldehyde sensing. ACS Appl Mater Interfaces 9(21):18170–18177. https://doi.org/10.1021/acsami.7b02000

    Article  CAS  Google Scholar 

  24. Wang Z, Liu J, Wang F, Chen S, Luo H, Yu X (2010) Size-controlled synthesis of ZnSnO3 cubic crystallites at low temperatures and Their HCHO-sensing properties. J Phys Chem C 114(32):13577–13582. https://doi.org/10.1021/jp104733e

    Article  CAS  Google Scholar 

  25. Fan H, Zeng Y, Xu X, Lv N, Zhang T (2011) Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane. Sens Actuators B Chem 153(1):170–175. https://doi.org/10.1016/j.snb.2010.10.026

    Article  CAS  Google Scholar 

  26. Xu J, Jia X, Lou X, Xi G, Han J, Gao Q (2007) Selective detection of HCHO gas using mixed oxides of ZnO/ZnSnO3. Sens Actuators B Chem 120(2):694–699. https://doi.org/10.1016/j.snb.2006.03.033

    Article  CAS  Google Scholar 

  27. Tang W, Wang J, Qiao Q, Liu Z, Li X (2015) Mechanism for acetone sensing property of Pd-loaded SnO2 nanofibers prepared by electrospinning: Fermi-level effects. J Mater Sci. https://doi.org/10.1007/s10853-015-8836-0

    Article  Google Scholar 

  28. Bai SL, Chen C, Luo RX, Chen AF, Li DQ (2015) Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances. Sens Actuators B Chem 216:113–120. https://doi.org/10.1016/j.snb.2015.04.036

    Article  CAS  Google Scholar 

  29. Zhai Q, Du B, Feng R, Xu W, Wei Q (2014) A highly sensitive gas sensor based on Pd-doped Fe3O4 nanoparticles for volatile organic compounds detection. Anal Methods 6(3):886–892. https://doi.org/10.1039/C3AY41867G

    Article  CAS  Google Scholar 

  30. Kim H, Jin C, Park S, Lee C (2012) Enhanced H2S gas sensing properties of multiple-networked Pd-doped SnO2-core/ZnO-shell nanorod sensors. Mater Res Bull 47(10):2708–2712. https://doi.org/10.1016/j.materresbull.2012.04.038

    Article  CAS  Google Scholar 

  31. Jb Zhong, Jz Li, Xy He, Zeng J, Lu Y, Hu W, Lin K (2012) Improved photocatalytic performance of Pd-doped ZnO. Curr Appl Phys 12(3):998–1001. https://doi.org/10.1016/j.cap.2012.01.003

    Article  Google Scholar 

  32. Wrobel G, Piech M, Dardona S, Ding Y, Gao P-X (2009) Seedless synthesis and thermal decomposition of single crystalline zinc hydroxystannate cubes. Cryst Growth Des 9(10):4456–4460. https://doi.org/10.1021/cg900486r

    Article  CAS  Google Scholar 

  33. Zhang W, Zhou Z, Shan X, Xu R, Chen Q, He G, Sun X, Chen H (2016) Solvent-thermal preparation of a CuCo2O4/RGO heterocomposite: an efficient catalyst for the reduction of p-nitrophenol. New J Chem. https://doi.org/10.1039/c6nj00374e

    Article  Google Scholar 

  34. Zhou X, Li X, Sun H, Sun P, Liang X, Liu F, Hu X, Lu G (2015) Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl Mater Interfaces 7(28):15414–15421. https://doi.org/10.1021/acsami.5b03537

    Article  CAS  Google Scholar 

  35. Guo W, Liu T, Yu W, Huang L, Chen Y, Wang Z (2013) Rapid selective detection of formaldehyde by hollow ZnSnO3 nanocages. Phys E Low Dimens Syst Nanostruct 48:46–52. https://doi.org/10.1016/j.physe.2012.11.021

    Article  CAS  Google Scholar 

  36. Zeng Y, Wang X, Zheng W (2013) Synthesis of novel hollow ZnSnO3 cubic nanocages and their HCHO sensing properties. J Nanosci Nanotechnol 13(2):1286–1290. https://doi.org/10.1166/jnn.2013.5959

    Article  CAS  Google Scholar 

  37. Wen Z, Tian-mo L (2010) Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Phys B 405(5):1345–1348. https://doi.org/10.1016/j.physb.2009.11.086

    Article  CAS  Google Scholar 

  38. Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y (2016) Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens Actuators B Chem 223:149–156. https://doi.org/10.1016/j.snb.2015.09.102

    Article  CAS  Google Scholar 

  39. Jia X, Tian M, Zhang Z, Dai R, Wu X, Song H (2015) Highly sensitive formaldehyde chemical sensor based on in situ precipitation synthesis of ZnSnO3 microspheres. J Mater Sci: Mater Electron 26(8):1–8

    CAS  Google Scholar 

  40. Zeng Y, Wang X, Zheng W (2013) Synthesis of novel hollow ZnSnO3 cubic nanocages and their HCHO sensing properties. J Nanaosci Nanotechnol 13(2):1286–1290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51372013, 51772015), the National Key R&D Program of China (2016YFC0207100) and Foundation of Guangxi Department of Education (2017KY0025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Shu or Dianqing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Tong, W., Tian, Y. et al. Facile synthesis of Pd-doped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde. J Mater Sci 54, 2025–2036 (2019). https://doi.org/10.1007/s10853-017-1588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1588-2

Keywords

Navigation