Journal of Materials Science

, Volume 52, Issue 19, pp 11737–11748 | Cite as

Towards high-performance hybrid hydrophilic membranes: chemical anchoring of hydroxyl-rich nanoparticles on PVDF membranes via a silane coupling agent

  • Qing Zhou
  • Si Xu
  • Chenxuan Zhu
  • Boyu Cao
  • Fahmeeda Kausar
  • Anhou Xu
  • Wang Zhang Yuan
  • Yongming Zhang


Physical blending with hydrophilic nanoparticles (NPs) is generally adopted to improve the performance of hydrophobic membranes. Stable immobilization of the NPs remains challenging due to the weak bonding. Covalent bonding is expected to overcome this problem. Herein, γ-methacryloxy propyl trimethoxy silane (MPTS) was grafted onto PVDF membranes, affording a versatile materials platform to firmly anchor hydroxyl-rich nanomaterials (HRNs) (TiO2, SiO2, β-FeOOH-1, β-FeOOH-2, etc.) via a facile dehydration process. The stability of the resulting hybrid PVDF-g-PMPTS/HRN membranes is remarkably improved, as evidenced by their almost unchanged water contact angles even under ultrasonication for 30 min. The immobilization yield of HRNs, hydrophilicity, roughness and water flux of the membranes are enhanced with increasing graft degree of PMPTS. The resulting hybrid membranes exhibit much better water flux recovery ratio and BSA rejection ratio compared to the pristine PVDF membrane, owing to their excellent anchoring stability and outstanding hydrophilicity. This work provides a general effective chemical route to the construction of hybrid hydrophilic membranes with high performance.



This work was financially supported by the National Natural Science Foundation of China (51473092, 51573090), the Shanghai Rising-Star Program (15QA1402500) and Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials.

Supplementary material

10853_2017_1313_MOESM1_ESM.doc (4 mb)
Supplementary material 1 (DOC 4090 kb)


  1. 1.
    Qin A, Wu X, Ma B, Zhao X, He C (2014) Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. J Mater Sci 49:7797–7808.  10.1007/s10853-014-8490-y CrossRefGoogle Scholar
  2. 2.
    Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine). J Membr Sci 327(1–2):244–253CrossRefGoogle Scholar
  3. 3.
    Tao M, Liu F, Xue L (2012) Hydrophilic poly (vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation. J Mater Chem 22(18):9131–9137CrossRefGoogle Scholar
  4. 4.
    Bano S, Mahmood A, Kim SJ, Lee KH (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3(5):2065–2071CrossRefGoogle Scholar
  5. 5.
    Zeng G, He Y, Yu Z, Zhan Y, Ma L, Zhang L (2016) Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites. Appl Surf Sci 371:624–632CrossRefGoogle Scholar
  6. 6.
    Han Y, Song S, Lu Y, Zhu D (2016) A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment. Appl Surf Sci 379:474–479CrossRefGoogle Scholar
  7. 7.
    Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56CrossRefGoogle Scholar
  8. 8.
    Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Monfared HA (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29CrossRefGoogle Scholar
  9. 9.
    Shi F, Ma Y, Ma J, Wang P, Sun W (2012) Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. J Membr Sci 389:522–531CrossRefGoogle Scholar
  10. 10.
    Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen BV (2011) Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 21(28):10311–10320CrossRefGoogle Scholar
  11. 11.
    Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277(1):40–45CrossRefGoogle Scholar
  12. 12.
    Wei Y, Chu HQ, Dong BZ, Li X, Xia SJ, Qiang ZM (2011) Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 272(1–3):90–97CrossRefGoogle Scholar
  13. 13.
    Yang Y, Zhang H, Wang P, Zheng Q, Li J (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci 288(1):231–238CrossRefGoogle Scholar
  14. 14.
    Yan L, Li YS, Xiang CB, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276(1):162–167CrossRefGoogle Scholar
  15. 15.
    Yang X, He Y, Zeng G, Zhan Y, Pan Y, Shi H, Chen Q (2016) Novel hydrophilic PVDF ultrafiltration membranes based on a ZrO2. J Mater Sci 51(19):8965–8976. doi: 10.1007/s10853-016-0147-6 CrossRefGoogle Scholar
  16. 16.
    Damodar RA, You SJ, Chou HH (2009) Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172(2–3):1321–1328CrossRefGoogle Scholar
  17. 17.
    Xia S, Ni M (2015) Preparation of poly (vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J Membr Sci 473:54–62CrossRefGoogle Scholar
  18. 18.
    Yu LY, Shen HM, Xu ZL (2009) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Polym Sci 113(3):1763–1772CrossRefGoogle Scholar
  19. 19.
    Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253(4):2003–2010CrossRefGoogle Scholar
  20. 20.
    Wang P, Ma J, Wang Z, Shi F, Liu Q (2012) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28(10):4776–4786CrossRefGoogle Scholar
  21. 21.
    Shi F, Ma Y, Ma J, Wang P, Sun W (2013) Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J Membr Sci 427:259–269CrossRefGoogle Scholar
  22. 22.
    Zhang G, Lu S, Zhang L, Meng Q, Shen C, Zhang J (2013) Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J Membr Sci 436:163–173CrossRefGoogle Scholar
  23. 23.
    Ismail AF, Kusworo TD, Mustafa A (2008) Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J Membr Sci 319(1–2):306–312CrossRefGoogle Scholar
  24. 24.
    Li Y, Guan HM, Chung TS, Kulprathipanja S (2006) Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. J Membr Sci 275(1–2):17–28CrossRefGoogle Scholar
  25. 25.
    Razmjou A, Resosudarmo A, Holmes RL, Li H, Mansouri J, Chen V (2012) The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination 287:271–280CrossRefGoogle Scholar
  26. 26.
    Rajaeian B, Rahimpour A, Tade MO, Liu S (2013) Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination 313:176–188CrossRefGoogle Scholar
  27. 27.
    Luo ML, Zhao JQ, Tang W, Pu CS (2005) Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 249(1–4):76–84CrossRefGoogle Scholar
  28. 28.
    Li JH, Xu YY, Zhu LP, Wang JH, Du CH (2009) Fabrication and characterization of a novel Tio2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci 326(2):659–666CrossRefGoogle Scholar
  29. 29.
    Zhang F, Zhang W, Yu Y, Deng B, Li J, Jin J (2013) Sol–gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J Membr Sci 432:25–32CrossRefGoogle Scholar
  30. 30.
    Ma J, Zhao Y, Xu Z, Min C, Zhou B, Li Y, Niu J (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320:1–9CrossRefGoogle Scholar
  31. 31.
    Chen PC, Wan LS, Xu ZK (2012) Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability. J Mater Chem 22(42):22727–22733CrossRefGoogle Scholar
  32. 32.
    Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of pvdf membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380(1–2):155–162CrossRefGoogle Scholar
  33. 33.
    Yin J, Yang Y, Hu Z, Deng B (2013) Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J Membr Sci 441(16):73–82CrossRefGoogle Scholar
  34. 34.
    Zhou Q, Lei XP, Li JH, Yan BF, Zhang QQ (2014) Antifouling, adsorption and reversible flux properties of zwitterionic grafted PVDF membrane prepared via physisorbed free radical polymerization. Desalination 337(6):6–15CrossRefGoogle Scholar
  35. 35.
    Chitrakar R, Tezuka S, Sonoda A, Sakane K, Hirotsu T (2009) Bromate ion-exchange properties of crystalline akaganéite. Ind Eng Chem Res 48(4):2107–2112CrossRefGoogle Scholar
  36. 36.
    Wang X, Chen X, Gao L, Zheng H, Ji M, Tang C, Zhang Z (2004) Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J Mater Chem 14:905–907CrossRefGoogle Scholar
  37. 37.
    Li MZ, Li JH, Shao XS, Miao J, Wang JB, Zhang QQ, Xu XP (2012) Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique. J Membr Sci 405:141–148CrossRefGoogle Scholar
  38. 38.
    Deng H, Xu Y, Chen Q, Wei X, Zhu B (2011) High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. J Membr Sci 366:363–372CrossRefGoogle Scholar
  39. 39.
    Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Qian X (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem A 1:3101–3111CrossRefGoogle Scholar
  40. 40.
    Wu Y, Wu C, Gong M, Xu T (2006) New anion exchanger organic–inorganic hybrid materials and membranes from a copolymerof glycidylmethacrylate and γ-methacryloxypropyl trimethoxy silane. J Appl Polym Sci 102:3580–3589CrossRefGoogle Scholar
  41. 41.
    Abdolmaleki A, Mallakpour S, Borandeh S (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Appl Surf Sci 257:6725–6733CrossRefGoogle Scholar
  42. 42.
    Kurth DG, Bein T (1993) Surface reactions on thin layers of silane coupling agents. Langmuir 9:2965–2973CrossRefGoogle Scholar
  43. 43.
    Soria J, Sanz J, Sobrados I, Coronado JM, Maira AJ, Hernández-Alonso MD, Fresno F (2007) FTIR and NMR study of the adsorbed water on nanocrystalline anatase. J Phys Chem C 111:10590–10596CrossRefGoogle Scholar
  44. 44.
    Hasegawa Y, Feng CX, Song YC, Tan ZL (1991) Ceramic fibres from polymer precursor containing Si–O–Ti bonds. J Mater Sci 26:3657–3664. doi: 10.1007/BF00557159 CrossRefGoogle Scholar
  45. 45.
    De G, Karmakar B, Ganguli D (2000) Hydrolysis–condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. J Mater Chem 10:2289–2293CrossRefGoogle Scholar
  46. 46.
    Badamali SK, Sakthivel A, Selvam P (2000) Tertiary butylation of phenol over mesoporous H-FeMCM-41. Catal Lett 65(1):153–157CrossRefGoogle Scholar
  47. 47.
    Sugama T, Carciello N, Taylor C (1991) Pyrogenic polygermanosiloxane coatings for aluminum substrates. J Non-Cryst Solids 134(1):58–70CrossRefGoogle Scholar
  48. 48.
    Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, Elaasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669CrossRefGoogle Scholar
  49. 49.
    Hwang SH, Song H, Lee J, Jang J (2014) Multifunctional Ag–decorated porous TiO2 nanofibers in dye-sensitized solar cells: efficient light harvesting, light scattering, and electrolyte contact. Chem Eur J 20:12974–12981CrossRefGoogle Scholar
  50. 50.
    Kumar A, Gupta SK (2013) Synthesis of adenine mediated superparamagnetic colloidal β-FeOOH nanostructure(s): study of their morphological changes and magnetic behavior. J Nanopart Res 15:1466. doi: 10.1007/s11051-013-1466-z CrossRefGoogle Scholar
  51. 51.
    Mehta A, Zydney AL (2005) Permeability and selectivity analysis for ultrafiltration membrane. J Membr Sci 249:245–249CrossRefGoogle Scholar
  52. 52.
    An Q, Li F, Ji Y, Chen H (2011) Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. J Membr Sci 367:158–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Qing Zhou
    • 1
  • Si Xu
    • 2
  • Chenxuan Zhu
    • 1
  • Boyu Cao
    • 1
    • 3
  • Fahmeeda Kausar
    • 1
  • Anhou Xu
    • 4
  • Wang Zhang Yuan
    • 1
  • Yongming Zhang
    • 1
  1. 1.School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research CenterShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Zhiyuan CollegeShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsUniversity of JinanJinanChina

Personalised recommendations