Skip to main content
Log in

Phase formation and microstructure during laser sintering and crystallization of a 4.2 MgO·5.0 ZnO·44.1 CaO·26.7 Al2O3·20.0 SiO2 glass

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to produce housings for high-temperature applications, alumina is a highly advantageous material because it has a high chemical durability and withstands high temperatures. If alumina is to be sealed, materials are necessary which have an adapted coefficient of thermal expansion (8.6 × 10−6 K−1). If temperature-sensitive components have to be encapsulated, a rapid laser sealing process is highly advantageous. This process requires a glass which can rapidly be crystallized. In this paper, a glass powder with the composition 4.2 MgO·5.0 ZnO·44.1·CaO·26.7 Al2O3·20.0 SiO2 was sintered and subsequently crystallized using a CO2-laser. As crystalline phases, predominantly a solid solution of akermanite and gehlenite (AGSS) was formed and as phases with minor concentrations Al2O3, spinel/gahnite solid solution and ZnO. The AGSS grains have sizes of approximately 5 µm, and Mg and Zn are enriched at the grain boundaries. After sealing at temperatures of 985 and 1135 °C, a similar microstructure and similar grain sizes were observed. The AGSS seems to nucleate at the glass/Al2O3 interface but also in the bulk. The AGSS and all other phases do not show a preferred orientation. The resulting coefficients of thermal expansion fit well to that of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Schacht M, Boukis N, Dinjus E (2000) Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures. J Mater Sci 35:6251–6258. doi:10.1023/a:1026714218522

    Article  Google Scholar 

  2. Börner FD, Lippmann W, Hurtado A, Schön B (2014) Glasses for laser joining of zirconia ceramics. J Eur Ceram Soc 34:765–772. doi:10.1016/j.jeurceramsoc.2013.09.019

    Article  Google Scholar 

  3. Kasch S, Conrad D, Sändig S (2014) High-temperature joining of ceramics and sapphire by laser-based process. J Ceram Sci Technol 5:269–274. doi:10.4416/Jcst2014-00027

    Google Scholar 

  4. Döhler F, Kasch S, Schmidt T, Rüssel C (2016) Sealing of alumina using a CO2 laser and a rapidly crystallizing glass. J Mater Process Technol 233:206–211. doi:10.1016/j.jmatprotec.2016.02.020

    Article  Google Scholar 

  5. Döhler F, Zscheckel T, Kasch S, Schmidt T, Rüssel C (2017) A glass in the CaO/MgO/Al2O3/SiO2 system for the rapid laser sealing of alumina. Ceram Int 43:4302–4308. doi:10.1016/j.ceramint.2016.12.073

    Article  Google Scholar 

  6. Herrmann M, Lippmann W, Hurtado A (2014) Y2O3–Al2O3–SiO2-based glass-ceramic fillers for the laser-supported joining of SiC. J Eur Ceram Soc 34:1935–1948. doi:10.1016/j.jeurceramsoc.2014.01.019

    Article  Google Scholar 

  7. Kuscer D, Bantan I, Hrovat M, Malič B (2017) The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J Eur Ceram Soc 37:739–746. doi:10.1016/j.jeurceramsoc.2016.08.032

    Article  Google Scholar 

  8. Fergus JW (2005) Sealants for solid oxide fuel cells. J Power Source 147:46–57. doi:10.1016/j.jpowsour.2005.05.002

    Article  Google Scholar 

  9. Kerstan M, Rüssel C (2011) Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). J Power Source 196:7578–7584. doi:10.1016/j.jpowsour.2011.04.035

    Article  Google Scholar 

  10. Thieme C, Rüssel C (2014) Cobalt containing crystallizing glass seals for solid oxide fuel cells—a new strategy for strong adherence to metals and high thermal expansion. J Power Source 258:182–188. doi:10.1016/j.jpowsour.2014.02.024

    Article  Google Scholar 

  11. Lara C, Pascual M, Prado M, Duran A (2004) Sintering of glasses in the system RO–Al2O3–BaO–SiO2 (R = Ca, Mg, Zn) studied by hot-stage microscopy. Solid State Ion 170:201–208. doi:10.1016/j.ssi.2004.03.009

    Article  Google Scholar 

  12. Keyvani N, Marghussian VK, Rezaie HR, Kord M (2011) Effect of Al2O3 content on crystallization behavior, microstructure, and mechanical properties of SiO2–Al2O3–CaO–MgO glass–ceramics. Int J Appl Ceram Technol 8:203–213. doi:10.1111/j.1744-7402.2009.02428.x

    Article  Google Scholar 

  13. Veit U, Houet Y, Laurent D, Rüssel C (2015) Liquidus temperatures of calcium magnesium alumosilicate glass-forming compositions determined via gradient furnace and from the melting peak by differential thermal analysis. Thermochim Acta 618:1–5. doi:10.1016/j.tca.2015.08.033

    Article  Google Scholar 

  14. Reddy AA, Tulyaganov DU, Goel A et al (2013) Melilite glass–ceramic sealants for solid oxide fuel cells: effects of ZrO2 additions assessed by microscopy, diffraction and solid-state NMR. J Mater Chem A 1:6471. doi:10.1039/c3ta10789b

    Article  Google Scholar 

  15. Reddy AA, Tulyaganov DU, Goel A, Kapoor S, Pascual MJ, Ferreira JMF (2013) Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite system. J Mater Sci 48:4128–4136. doi:10.1007/s10853-013-7225-9

    Article  Google Scholar 

  16. Orsini PG, Buri A, Marotta A (1975) Devitrification of glasses in the akermanite–gehlenite system. J Am Ceram Soc 58:306–311. doi:10.1111/j.1151-2916.1975.tb11483.x

    Article  Google Scholar 

  17. Ventura JMG, Tulyaganov DU, Agathopoulos S, Ferreira JMF (2006) Sintering and crystallization of akermanite-based glass–ceramics. Mater Lett 60:1488–1491. doi:10.1016/j.matlet.2005.11.059

    Article  Google Scholar 

  18. Swainson IP, Dove MT, Schmahl WW, Putnis A (1992) Neutron powder diffraction study of the akermanite–gehlenite solid-solution series. Phys Chem Miner 19:185–195

    Article  Google Scholar 

  19. Bagautdinov B, Hagiya K, Noguchi S et al (2002) Low-temperature studies on the two-dimensional modulations in åkermanite-type crystals: Ca2MgSi2O7 and Ca2ZnSi2O7. Phys Chem Miner 29:346–350. doi:10.1007/s00269-002-0238-6

    Article  Google Scholar 

  20. Khedim H, Nonnet H, Méar FO (2012) Development and characterization of glass–ceramic sealants in the (CaO–Al2O3–SiO2–B2O3) system for solid oxide electrolyzer cells. J Power Source 216:227–236. doi:10.1016/j.jpowsour.2012.05.041

    Article  Google Scholar 

  21. Lara C, Pascual MJ, Durán A (2004) Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). J Non Cryst Solids 348:149–155. doi:10.1016/j.jnoncrysol.2004.08.140

    Article  Google Scholar 

  22. Reddy AA, Tulyaganov DU, Kapoor S et al (2012) Study of melilite based glasses and glass–ceramics nucleated by Bi2O3 for functional applications. RSC Adv 2:10955. doi:10.1039/c2ra22001f

    Article  Google Scholar 

  23. Małecki A, Lejus AM, Viana B, Vivien D, Collongues R (1995) Devitrification of Nd3+-doped glasses in the akermanite–gehlenite system. J Therm Anal Calorim 44:461–472. doi:10.1007/bf02636136

    Article  Google Scholar 

Download references

Acknowledgements

These investigations were conducted with the kind support of the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF), Köln, by agency of the Hüttentechnische Vereinigung der Deutschen Glasindustrie (HVG), Frankfurt/Main, through the resources of the Bundesministerium für Wirtschaft (Grant: IGF 17751 BR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Döhler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döhler, F., Zscheckel, T., Kasch, S. et al. Phase formation and microstructure during laser sintering and crystallization of a 4.2 MgO·5.0 ZnO·44.1 CaO·26.7 Al2O3·20.0 SiO2 glass. J Mater Sci 52, 9344–9354 (2017). https://doi.org/10.1007/s10853-017-1151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1151-1

Keywords

Navigation