Advertisement

Journal of Materials Science

, Volume 52, Issue 16, pp 9739–9763 | Cite as

Exploring electronic properties and NO gas sensitivity of Si-doped SW-BNNTs under axial tensile strain

  • Hossein Roohi
  • Layla Maleki
  • Maryam Erfani Moradzadeh
Energy materials

Abstract

Continuously tuning electronic and magnetic properties of nanomaterials specially by applying an axial tensile strain is a promising route for construction of impending electronic and optoelectronic nanodevices. In the present work, Si doping and axial tensile strain were simultaneously utilized in exploring the structural and electronic properties of single-walled (6,0) Si N , Si B and Si N,B -doped Stone–Wales defective boron nitride nanotubes at M05-2X/6–31+G(d) level. Our findings demonstrate that the Si doping of SW-BNNT destroys the hexagonal BN network and alters the insulating feature of the SW-BNNT. Binding energies of Si-doped SW-BNNTs are estimated to be smaller than un-doped SW-BNNT and decrease continuously upon axial tensile strain. It can be estimated that the Si-doped SW–BNNTs and, in turn, their axial strained forms are more suitable than SW-BNNT one for photoconductivity applications. The unstrained Si N,B has a lower band gap than unstrained Si N and Si B . The results show that the axial tensile strain is not a suitable strategy to improve the conductivity of Si N,B , contrary to those found in Si N and Si B . In the second part of this work, sensitivity of strained and unstrained Si-doped SW-BNNTs toward NO gas is evaluated. The results show that the chemical adsorption of NO is thermodynamically favored in both strained and unstrained forms. Among the Si-doped SW-BNNT–NO complexes, Si N,B -ON1 and Si B -NO2 complexes with adsorption energy of −32.7 and −33.3 kcal mol−1, respectively, are thermodynamically more stable than other complexes. In addition, dispersion-corrected adsorption energies were evaluated at M05-2X-D3/6-31++G(d,p)//M05-2X/6–31+G(d) level of theory. The greatest charge transfer value and change in the band gap upon adsorption was predicted in all complexes. Thus, it is expected that Si-doped SW-BNNT could be a favorable NT for removing and sensing the NO gas.

Keywords

Axial Strain Chemical Hardness Electrophilicity Index Defect Formation Energy Isodensity Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

No potential conflict of interest is reported by the authors.

References

  1. 1.
    Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49(7):5081–5084CrossRefGoogle Scholar
  2. 2.
    Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(269):966–967CrossRefGoogle Scholar
  3. 3.
    Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Boron nitride nanotubes. Nature 391:59CrossRefGoogle Scholar
  4. 4.
    Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335CrossRefGoogle Scholar
  5. 5.
    Fuentes GG, Borowiak-Palen E, Pichler T, Liu X, Gra A, Behr G, Kalenczuk J, Knupfer M, Fink J (2003) Electronic structure of multiwall boron nitride nanotubes. Phys Rev B 67(3):035429CrossRefGoogle Scholar
  6. 6.
    Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111CrossRefGoogle Scholar
  7. 7.
    Freitas A, Azevedo S, Kaschny JR (2013) Effects of a transverse electric field on the electronic properties of single- and multi-wall BN nanotubes. Solid State Commun 153:40–45CrossRefGoogle Scholar
  8. 8.
    Roohi H, Bagheri S (2013) Effect of axial strain on structural and electronic properties of zig-zag type of boron nitride nanotube (BNNT): a quantum chemical study. Struct Chem 24(1):409–420CrossRefGoogle Scholar
  9. 9.
    Zhukovskii YF, Piskunov S, Begens J, Kazerovskis J, Lisovski O (2013) First-principles calculations of point defects in inorganic nanotubes. Phys Status Solidi 250:793–800CrossRefGoogle Scholar
  10. 10.
    Silva L, Guerini S, Lemos V, Filho J (2006) Electronic and structural properties of oxygen doped BN nanotubes. IEEE Trans Nanotechnol 5:517–522CrossRefGoogle Scholar
  11. 11.
    Liu H, Turner CH (2014) Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes. Phys Chem Chem Phys 16:22853–22860CrossRefGoogle Scholar
  12. 12.
    Zhao JX, Ding YH (2008) Theoretical study of Ni adsorption on single-walled boron nitride nanotubes with intrinsic defects. J Phys Chem C 112:5778–5783CrossRefGoogle Scholar
  13. 13.
    Xie Y, Zhang JM (2011) First-principles study on substituted doping of BN nanotubes by transition metals V, Cr and Mn. Comput Theor Chem 976:215–220CrossRefGoogle Scholar
  14. 14.
    Tang C, Bando Y, Huang Y, Yue SL, Gu CZ, Xu FF (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127:6552–6553CrossRefGoogle Scholar
  15. 15.
    Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685CrossRefGoogle Scholar
  16. 16.
    Golberg D, Bando Y, Dorozhkin P, Dong ZC (2004) Synthesis, analysis, and electrical property measurements of compound nanotubes in the B-C-N ceramic system. MRS Bull 29:38–42CrossRefGoogle Scholar
  17. 17.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435CrossRefGoogle Scholar
  18. 18.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRefGoogle Scholar
  19. 19.
    Wei X, Wang M, Bando Y, Golberg D (2010) Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. J Am Chem Soc 132:13592–13593CrossRefGoogle Scholar
  20. 20.
    Wei X, Wang M, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5:2916–2922CrossRefGoogle Scholar
  21. 21.
    Tontapha S, Morakot N, Ruangpornvisuti V, Wanno B (2012) Geometries and stabilities of transition metals doped perfect and Stone-Wales defective armchair (5,5) boron nitride nanotubes. Struct Chem 23:1819–1830CrossRefGoogle Scholar
  22. 22.
    Roohi H, Jahantab M, Rahmdel Delcheh S, Pakdel Khoshakhlagh B (2015) Chemical functionalization of boron nitride nanotube via the 1,3-dipolar cycloaddition reaction of azomethine ylide: a quantum chemical study. Struct Chem 26:749–759CrossRefGoogle Scholar
  23. 23.
    Roohi H, Khyrkhah S (2015) Green chemical functionalization of single-wall carbon nanotube with methylimidazolium dicyanamid ionic liquid: a first principle computational exploration. J Mol Liq 211:498–505CrossRefGoogle Scholar
  24. 24.
    Roohi H, Maleki L (2016) Effects of C1-3-doping on electronic and structural properties of stone wales defective boron nitride nanotubes as well as their NO gas sensitivity. RSC Adv 6:11353–11369CrossRefGoogle Scholar
  25. 25.
    Kim G, Park J, Hung S (2012) First principle study of substitutional carbon pair and Ston-Wals defect complexes in boron nitride nanotubes. Chem Phys Lett 522:79–82CrossRefGoogle Scholar
  26. 26.
    Chen YK, Liu LV, Wang YA (2010) Density functional study of interaction of atomic Pt with pristine and stone-wales-defective single-walled boron nitride nanotubes. J Phys Chem C 114:12382–12388CrossRefGoogle Scholar
  27. 27.
    Wang R, Zhu R, Zhang D (2008) Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett 467:131–135CrossRefGoogle Scholar
  28. 28.
    Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503CrossRefGoogle Scholar
  29. 29.
    Kumar R, Parashar A (2016) Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8:22CrossRefGoogle Scholar
  30. 30.
    Dumitrica T, Yakobson BI (2005) Rate theory of yield in boron nitride nanotubes. Phys Rev B 72:035418CrossRefGoogle Scholar
  31. 31.
    Choi J, Pyo S, Baek DH, Lee JI, Kim J (2014) Thickness, alignment and defect tunable growth of carbon nanotube arrays using designed mechanical loads. Carbon 66:126–133CrossRefGoogle Scholar
  32. 32.
    Miyamoto Y, Rubio A, Berber S, Yoon M, Toanek D (2004) Spectroscopic characterization of Stone-Wales defects in nanotubes. Phys Rev B 691:21413Google Scholar
  33. 33.
    Bettinger HF, Dumitrica T, Scuseria GE, Yakobson BI (2002) Mechanically induced defects and strength of BN nanotubes. Phys Rev B 65:041406CrossRefGoogle Scholar
  34. 34.
    Roohi H, Jahantab M, Yakta M (2015) Effect of the Stone-Wales (SW) defect on the response of BNNT to axial tension and compression: a quantum chemical study. Struct Chem 26:11–22CrossRefGoogle Scholar
  35. 35.
    Li Y, Zhou Z, Golberg D, Bando Y, von Rague Scheyer P, Chen Z (2008) Stone-Wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J Phys Chem C 112:1365–1370CrossRefGoogle Scholar
  36. 36.
    An W, Wu X, Yang JL, Zeng XC (2007) Adsorption and surface reactivity on single-walled boron nitride nanotubes containing Stone-Wales defects. J Phys Chem C 111:14105–14112CrossRefGoogle Scholar
  37. 37.
    Umadevi P, Aiswarya T, Senthilkumar L (2015) Encapsulation of fluoroethanols in pristine and Stone-Wales defect boron nitride nanotube—A DFT study. Appl Surf Sci 345:369–378CrossRefGoogle Scholar
  38. 38.
    Tabtimsai C, Nonsri A, Gratoo N, Massiri N, Suvanvapee P, Wanno B (2014) Carbon monoxide adsorption on carbon atom doped perfect and Stone-Wales defect single-walled boron nitride nanotubes: a DFT investigation. Monatsh Chem 145:725–735CrossRefGoogle Scholar
  39. 39.
    Gupta SK, He H, Banyai D, Si M, Pandey R, Karna SP (2014) Effect of Si doping on the electronic properties of BN monolayer. Nanoscale 6:5526–5531CrossRefGoogle Scholar
  40. 40.
    Wei X, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899CrossRefGoogle Scholar
  41. 41.
    Liao ML, Wang YC, Ju SP, Lien TW, Huang LF (2011) Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains. J Appl Phys 110:054310CrossRefGoogle Scholar
  42. 42.
    Ge C, Li X, Dong J (2011) Electronic structures of deformed B2C nanotubes under tensile strain. Phys E 44:105–110CrossRefGoogle Scholar
  43. 43.
    Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8,0) boron nitride nanotube: a first-principles study. Phys E 76:47–51CrossRefGoogle Scholar
  44. 44.
    Lin S, Ye X, Huang J (2015) Can metal-free silicon-doped hexagonal boron nitride nanosheet and nanotube exhibit activity toward CO oxidation? Phys Chem Chem Phys 17:888–895CrossRefGoogle Scholar
  45. 45.
    Esrafili MD, Saeidi N (2015) Si-embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation. Superlattices Microstruct 81:7–15CrossRefGoogle Scholar
  46. 46.
    Zhang J, Zhang Y, Pan Z, Yang S, Shi J, Li S, Min D, Li X, Wang X, Liu D, Yang A (2015) Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes. Appl Phys Lett 107:093104–093105CrossRefGoogle Scholar
  47. 47.
    You X, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci 258:6391–6397CrossRefGoogle Scholar
  48. 48.
    Bezi Javan M (2015) Adsorption of CO and NO molecules on SiC nanotubes and nanocages. Surf Sci 635:128–142CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101CrossRefGoogle Scholar
  50. 50.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J. Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA Salvador P, Dan-nenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  52. 52.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  53. 53.
    Beer FP, Johnston ER, Dewolf JT (2006) Mechanics of materials, vol 54. McGraw-Hill Education, New YorkGoogle Scholar
  54. 54.
    Lu T, Chen F (2012) A multifunctional wavefunction analyzer: multiwfn. J Comput Chem 33:580–592CrossRefGoogle Scholar
  55. 55.
    Neamen DA (2011) Semiconductor physics and devices basic principles, vol 784, 4 th edn. McGraw-Hill, New YorkGoogle Scholar
  56. 56.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  57. 57.
    Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  58. 58.
    Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu Rep C 106:106–118Google Scholar
  59. 59.
    Gyftopoulos EP, Hatsopoulos GN (1968) Quantum-thermodynamic definition of electronegativity. Proc Natl Acad Sci USA 60:786–793CrossRefGoogle Scholar
  60. 60.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity-the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  61. 61.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  62. 62.
    Parr RG, Szentpa´ly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  63. 63.
    Si MS, Xue DS (2006) First-principles study of silicon-doped (5,5) BN nanotubes. Europhys Lett 76:664–669CrossRefGoogle Scholar
  64. 64.
    Cho YJ, Kim CH, Kim HS, Park J, Choi HC, Shin HJ, Gao G, Kang HS (2009) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21:136–143CrossRefGoogle Scholar
  65. 65.
    Liu YJ, Gao B, Xu D, Wang H, Zhao J (2014) Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: electronic, magnetic properties, and reactivity. Phys Lett A 378:2989–2994CrossRefGoogle Scholar
  66. 66.
    Ju SP, Wang YC, Lien TW (2011) Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study. Nanoscale Res Lett 6:160CrossRefGoogle Scholar
  67. 67.
    Guerini S, Kar T, Piquini P (2004) Theoretical study of Si impurities in BN nanotubes. Eur Phys J B 38:515CrossRefGoogle Scholar
  68. 68.
    Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551CrossRefGoogle Scholar
  69. 69.
    Gao G, Seok Kang H (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hossein Roohi
    • 1
  • Layla Maleki
    • 1
  • Maryam Erfani Moradzadeh
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations