Journal of Materials Science

, Volume 52, Issue 16, pp 9922–9930 | Cite as

Cotton fabric-based facile solar photocatalytic purification of simulated real dye wastes

  • Huawen Hu
  • Menglei Chang
  • Xiaowen Wang
  • Dongchu Chen


For the first time, this study presents solar photocatalytic processing of the real dye wastes remaining after finishing polyester/cotton (P/C) blends, rather than a pure organic dye solution as widely reported. A commonly used microencapsulation-based one-bath dyeing is investigated systematically, in order to simulate the real dyeing environment and to generate real dye wastes. The generated dye wastes are subsequently tackled by facile cotton fabric-based photocatalytic degradation involving a visible light-active TiO2 photocatalyst under solar light. Importantly, such a TiO2 photocatalyst is prepared without any calcination, doping, or coupling with plasmonic metal nanoparticles or narrow-band-gap semiconductors. As a result, the present visible light-responsive cotton fabric-based photocatalytic degradation of the simulated real dye wastes is expected to stimulate various industries for achieving simultaneous effective dyeing and processing of the dye wastes remained. This study also contributes to energy saving and environmental protection.


TiO2 Photocatalytic Degradation Cotton Fabric TiO2 Nanoparticles Polyurea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly appreciate the special funding project of the technical innovation of Foshan city (2014AG10009), the self-innovation promotion project of the universities in Guangdong Province (2015KQNCX178), and research centre project of engineering technology of Foshan City (2014GA000355).

Supplementary material

10853_2017_1107_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1502 kb)


  1. 1.
    Hu H, Xin JH, Hu H, Wang X, Miao D, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions—a review. J Mater Chem A 3:11157. doi: 10.1039/c5ta00753d CrossRefGoogle Scholar
  2. 2.
    Parmar KR, Patel I, Basha S, Murthy ZVP (2014) Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49:6772. doi: 10.1007/s10853-014-8378-x CrossRefGoogle Scholar
  3. 3.
    Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2013) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743. doi: 10.1007/s10853-013-7861-0 CrossRefGoogle Scholar
  4. 4.
    Hu H, Xin JH, Hu H, Wang X (2015) Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res 8:3992. doi: 10.1007/s12274-015-0902-z CrossRefGoogle Scholar
  5. 5.
    Hu H, Xin JH, Hu H (2014) PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application. J Mater Chem A 2:11319. doi: 10.1039/c4ta01620c CrossRefGoogle Scholar
  6. 6.
    Hu H, Xin JH, Hu H, Chan A, He L (2013) Glutaraldehyde–chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr Polym 91:305. doi: 10.1016/j.carbpol.2012.08.038 CrossRefGoogle Scholar
  7. 7.
    Hu H, Wang X, Miao D et al (2015) A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol. Chem Commun 51:16699. doi: 10.1039/c5cc05826k CrossRefGoogle Scholar
  8. 8.
    Hu H, Allan CCK, Li J et al (2014) Multifunctional organically modified graphene with super-hydrophobicity. Nano Res 7:418. doi: 10.1007/s12274-014-0408-0 CrossRefGoogle Scholar
  9. 9.
    Hu H-W, Xin JH, Hu H (2013) Highly efficient graphene-based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 78:1483. doi: 10.1002/cplu.201300124 CrossRefGoogle Scholar
  10. 10.
    Hu H, Xin J, Hu H, Wang X, Lu X (2014) Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran. Molecules 19:7459. doi: 10.3390/molecules19067459 CrossRefGoogle Scholar
  11. 11.
    Xue Z, Zhao S, Zhao Z, Li P, Gao J (2016) Thermodynamics of dye adsorption on electrochemically exfoliated graphene. J Mater Sci 51:4928. doi: 10.1007/s10853-016-9798-6 CrossRefGoogle Scholar
  12. 12.
    Zhang J, Xiao H, Yang Y (2014) Preparation of hemicellulose-containing latex and its application as absorbent toward dyes. J Mater Sci 50:1673. doi: 10.1007/s10853-014-8728-8 CrossRefGoogle Scholar
  13. 13.
    Scaglione F, Battezzati L (2015) Metastable microstructures containing zero valent iron for fast degradation of azo dyes. J Mater Sci 50:5238. doi: 10.1007/s10853-015-9071-4 CrossRefGoogle Scholar
  14. 14.
    Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997. doi: 10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  15. 15.
    Qu X, Xie D, Gao L, Cao L, Du F (2014) Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications. J Mater Sci 50:21. doi: 10.1007/s10853-014-8441-7 CrossRefGoogle Scholar
  16. 16.
    Liu E, Fan J, Hu X et al (2014) A facile strategy to fabricate plasmonic Au/TiO2 nano-grass films with overlapping visible light-harvesting structures for H2 production from water. J Mater Sci 50:2298. doi: 10.1007/s10853-014-8793-z CrossRefGoogle Scholar
  17. 17.
    Wang X, Hu H, Yang Z, Kong Y, Fei B, Xin JH (2015) Visible light-active sub-5 nm anatase TiO2 for photocatalytic organic pollutant degradation in water and air, and for bacterial disinfection. Catal Commun 72:81. doi: 10.1016/j.catcom.2015.09.014 CrossRefGoogle Scholar
  18. 18.
    Kong Y, Liu Y, Xin JH (2011) Fabrics with self-adaptive wettability controlled by “light-and-dark”. J Mater Chem 21:17978. doi: 10.1039/c1jm12516h CrossRefGoogle Scholar
  19. 19.
    Gondikas AP, Fvd Kammer RB, Reed S Wagner, Ranville JF, Hofmann T (2014) Release of TiO2 Nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational lake. Environ Sci Technol 48:5415. doi: 10.1021/es405596y CrossRefGoogle Scholar
  20. 20.
    Han J, Zhu G, Hojamberdiev M, Peng J, Liu P (2015) Synergetic effects of surface adsorption and photodegradation on removal of organic pollutants by Er3+-doped BiOI ultrathin nanosheets with exposed 001 facets. J Mater Sci 51:2057. doi: 10.1007/s10853-015-9516-9 CrossRefGoogle Scholar
  21. 21.
    Dinari M, Momeni MM, Ghayeb Y (2016) Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts. J Mater Sci Mater Electron 27:9861. doi: 10.1007/s10854-016-5054-8 CrossRefGoogle Scholar
  22. 22.
    Cao QW, Zheng YF, Yin HY, Song XC (2016) A novel AgI/AgIO3 heterojunction with enhanced photocatalytic activity for organic dye removal. J Mater Sci 51:4559. doi: 10.1007/s10853-016-9769-y CrossRefGoogle Scholar
  23. 23.
    Zhao H, Liu L, Andino JM, Li Y (2013) Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels. J Mater Chem A 1:8209. doi: 10.1039/c3ta11226h CrossRefGoogle Scholar
  24. 24.
    Bykkam S, Rao KV, Naresh Kumar R, Shilpa Chakra C, Dayakar T (2016) Few-layered graphene decked with TiO2 nano particles by ultrasonic assisted synthesis and its dye-sensitized solar cell application. J Mater Sci Mater Electron 27:12574. doi: 10.1007/s10854-016-5388-2 CrossRefGoogle Scholar
  25. 25.
    Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25. doi: 10.1016/j.apcata.2009.02.043 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Materials Science and Energy EngineeringFoshan UniversityFoshanChina
  2. 2.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityKowloonChina

Personalised recommendations