Skip to main content

Advertisement

Log in

Direct formulation of nanocrystalline silicon carbide/nitride solid ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We developed a new in situ reaction method to synthesize SiC and Si3N4 ceramic solids from meltable precursor compositions into shaped ceramic composites with nanocrystalline grains. The process uses Si powder and 1,2,4,5-tetrakis(phenylethynyl)benzene, which readily react above 1400 °C to form the SiC and Si3N4 crystallites in the presence of argon and nitrogen, respectively. X-ray diffraction analysis, Raman spectroscopy and density measurements indicated the formation of near stoichiometric SiC and Si3N4 within the shaped solid. Further characterization of electrical conductivity and oxidative stability of the prepared ceramics analyzed the influence of nanoscale features on intrinsic properties of resulting composites. The hardness and elastic modulus values for the synthesized SiC determined by nanoindentation varied in the range of 25–46 GPa and 300–440 GPa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chin HS, Cheong KY, Ismail AB (2010) Metall Mater Trans B 41:824

    Article  Google Scholar 

  2. Bai JG, Yin J, Zhang Z, Lu G-Q, van Wyk JD (2007) IEEE Trans Adv Packag 30:506

    Article  Google Scholar 

  3. Singh R, Ryu S-H, Capell DC, Palmour JW (2003) IEEE Trans Electron Devices 50:774

    Article  Google Scholar 

  4. Wondrak W, Held R, Niemann E, Schmid U (2001) IEEE Trans Industr Electron 48:307

    Article  Google Scholar 

  5. Ou H, Ou Y, Argyraki A et al (2014) Eur Phys J B 87:58

    Article  Google Scholar 

  6. Soong C-W, Patil AC, Garverick SL, Fu X, Mehregany M (2012) IEEE Electron Device Lett 33:1369

    Article  Google Scholar 

  7. Casady J, Johnson RW (1996) Solid State Electron 39:1409

    Article  Google Scholar 

  8. Ledoux MJ, Hantzer S, Huu CP, Guille J, Desaneaux M-P (1988) J Catal 114:176

    Article  Google Scholar 

  9. Johnson RW, Evans JL, Jacobsen P, Thompson JR, Christopher M (2004) IEEE Trans Electron Packag Manuf 27:164

    Article  Google Scholar 

  10. Pierce J, Zawada L, Srinivasan R (2000) J Mater Sci 35:2973. doi:10.1023/A:1004778726935

    Article  Google Scholar 

  11. Rajan N, Mehregany M, Zorman CA, Stefanescu S, Kicher T (1999) J Microelectromech Syst 8:251

    Article  Google Scholar 

  12. Halbig MC, Singh M, Tsuda H (2012) Int J Appl Ceram Technol 9:677

    Article  Google Scholar 

  13. Zhang Y, Xu Y, Lou J, Zhang L, Cheng L, Chen Z (2005) Int J Appl Ceram Technol 2:114

    Article  Google Scholar 

  14. Buchmamm M, Gadow R, Scherer D, Speicher M (2002) Ceram Trans 139:3

    Google Scholar 

  15. Matějka V, Lu Y, Jiao L, Huang L, Martynková GS, Tomášek V (2010) Tribol Int 43:144

    Article  Google Scholar 

  16. Traeger R, Lysne P (1988) IEEE Trans Nucl Sci 35:852

    Article  Google Scholar 

  17. Zhitnyuk S, Makarov N, Guseva T (2014) Glass Ceram 71:6

    Article  Google Scholar 

  18. Lundberg P, Lundberg B (2005) Int J Impact Eng 31:781

    Article  Google Scholar 

  19. Rade K, Martinčič A, Novak S, Kobe S (2013) J Mater Sci 48:5295. doi:10.1007/s10853-013-7321-x

    Article  Google Scholar 

  20. Medri V, Papa E, Landi E (2013) Mater Lett 106:377

    Article  Google Scholar 

  21. Rade K, Novak S, Dražić G, Kobe S (2012) J Mater Sci 47:3400. doi: 10.1007/s10853-011-6187-z

    Article  Google Scholar 

  22. Yakimova R, Petoral R Jr, Yazdi G, Vahlberg C, Spetz AL, Uvdal K (2007) J Phys D Appl Phys 40:6435

    Article  Google Scholar 

  23. Oliveros A, Guiseppi-Elie A, Saddow SE (2013) Biomed Microdevice 15:353

    Article  Google Scholar 

  24. Neudeck PG, Okojie RS, Chen L-Y (2002) Proc IEEE 90:1065

    Article  Google Scholar 

  25. Riza NA, Sheikh M, Perez F (2010) J Eng Gas Turbines Power 132:051601

    Article  Google Scholar 

  26. Senesky DG, Jamshidi B, Cheng KB, Pisano AP (2009) IEEE Sens J 9:1472

    Article  Google Scholar 

  27. Chen YF, Wang H, Tang J, Liu HL, Chen SG, Fan QS (2007) Key Eng Mater Conf Trans 336:1151–1154

    Google Scholar 

  28. Wang Y, Zhang Y-M, Han J-C, Zuo H-B (2006) Trans Nonferrous Metals Soc Compos Sci Technol China 16:409

    Article  Google Scholar 

  29. Yui YY, Kumura T, Tange Y (2004) In: 5th International conference on space optics

  30. Ferraris M, Salvo M, Casalegno V et al (2011) J Nucl Mater 417:379

    Article  Google Scholar 

  31. Katoh Y, Snead LL, Szlufarska I, Weber WJ (2012) Curr Opin Solid State Mater Sci 16:143

    Article  Google Scholar 

  32. Katoh Y, Nozawa T, Snead LL, Ozawa K, Tanigawa H (2011) J Nucl Mater 417:400

    Article  Google Scholar 

  33. Hino T, Hayashishita E, Yamauchi Y, Hashiba M, Hirohata Y, Kohyama A (2005) Fusion Eng Des 73:51

    Article  Google Scholar 

  34. Naslain R (2004) Compos Sci Technol 64:155

    Article  Google Scholar 

  35. Spriet P, Habarou G (1997) Key Eng Mater Conf Trans 127:1267–1276

    Google Scholar 

  36. Dever JA, Nathal MV, DiCarlo JA (2013) J Aerosp Eng 26:500

    Article  Google Scholar 

  37. van Roode M, Bhattacharya AK, Ferber MK, Abdi F (2010) ASME Turbo Expo 2010: Power for Land, Sea, and Air conference: 455–469

  38. Willander M, Friesel M, Wahab QU, Straumal B (2006) J Mater Sci Mater Electron 17:1

    Article  Google Scholar 

  39. Chaudhuri MG, Dey R, Mitra MK, Das GC, Mukherjee S (2008) Sci Technol Adv Mater 9:015002

    Article  Google Scholar 

  40. Backhaus RM, Guerin V, Huntz AM, Urbanovich VS (2002) J Am Ceram Soc 85:385

    Article  Google Scholar 

  41. Oba F, Tatsumi K, Tanaka I, Adachi H (2002) J Am Ceram Soc 85:97

    Article  Google Scholar 

  42. Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P (2017) Int Mater Rev 62:117. doi:10.1080/09506608.2016.1213939

    Article  Google Scholar 

  43. Ohji T, Fukushima M (2012) Int Mater Rev 57:115

    Article  Google Scholar 

  44. Degenhardt U, Stegner F, Liebscher C et al (2012) J Eur Ceram Soc 32:1893

    Article  Google Scholar 

  45. Martin H-P, Ecke R, Müller E (1998) J Eur Ceram Soc 18:1737

    Article  Google Scholar 

  46. Hillig WB, Mehan R, Morelock C, DeCarlo V (1975) Am Ceram Soc Bull 54:1054

    Google Scholar 

  47. Mehan R (1978) J Mater Sci 13:358. doi:10.1007/BF00647781

    Article  Google Scholar 

  48. Wang Y, Tan S, Jiang D (2004) Carbon 42:1833

    Article  Google Scholar 

  49. Zhao Y, Xia H, Tang R, Shi Z, Yang J, Wang J (2015) Ceram Int 41:6478

    Article  Google Scholar 

  50. Zhou H, Singh RN (1995) J Am Ceram Soc 78:2456

    Article  Google Scholar 

  51. Mu Y, Zhou W, Wang C, Luo F, Zhu D, Ding D (2014) Ceram Int 40:10037

    Article  Google Scholar 

  52. Zollfrank C, Sieber H (2005) J Am Ceram Soc 88:51

    Article  Google Scholar 

  53. Fan SW, Xu YD, Zhang LT et al (2007) Mater Sci Eng, A 467:53

    Article  Google Scholar 

  54. Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Carbon 41:2131

    Article  Google Scholar 

  55. Liu G, Yang K, Li J, Du J, Hou X (2008) J Phys Chem C 112:6285

    Article  Google Scholar 

  56. Meng G, Cui Z, Zhang L, Phillipp F (2000) J Cryst Growth 209:801

    Article  Google Scholar 

  57. Colombo P, Mera G, Riedel R, Sorarù GD (2010) J Am Ceram Soc 93:1805. doi:10.1111/j.1551-2916.2010.03876.x

    Google Scholar 

  58. Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) J Mater Chem A 1:3826

    Article  Google Scholar 

  59. Liew L-A, Zhang W, Bright VM, An L, Dunn ML, Raj R (2001) Sens Actuators, A 89:64

    Article  Google Scholar 

  60. Jones KM, Keller TM (1995) Polymer 36:187

    Article  Google Scholar 

  61. Kolel-Veetil MK, Goswami R, Fears KP et al (2015) J Mater Eng Perform 24:2060

    Article  Google Scholar 

  62. Gouma P (2012) Am Ceram Soc Bull 91:26

    Google Scholar 

  63. Sastri SB, Keller TM, Jones KM, Armistead JP (1993) Macromolecules 26:6171

    Article  Google Scholar 

  64. Ramadan A, Gould R, Ashour A (1994) Thin Solid Films 239:272

    Article  Google Scholar 

  65. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  Google Scholar 

  66. Gaidukov S, Cabulis U, Gromilova K, TupureinaV, Grigalovica A (2013) International Journal of Polymer Science 2013

  67. Khonakdar H, Morshedian J, Wagenknecht U, Jafari S (2003) Polymer 44:4301

    Article  Google Scholar 

  68. Zhang H, López-Honorato E, Javed A, Zhao X, Tan J, Xiao P (2012) J Eur Ceram Soc 32:1775

    Article  Google Scholar 

  69. Patrick L (1968) Phys Rev 167:809

    Article  Google Scholar 

  70. Li Z, Bradt R (1986) J Mater Sci 21:4366. doi:10.1007/BF01106557

    Article  Google Scholar 

  71. Halder N, Wagner C (1966) Acta Crystallogr A 20:312

    Article  Google Scholar 

  72. Seo W-S, Koumoto K, Arai S (1998) J Am Ceram Soc 81:1255

    Article  Google Scholar 

  73. Dhiman R, Morgen P (2013) Thin Solid Films 536:130

    Article  Google Scholar 

  74. Zubrilov A, Levinshtein M, Rumyantsev S, Shur M (2001) Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. John Wiley & Sons, New York, NY

  75. Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) Phys Rev B 81:075433

    Article  Google Scholar 

  76. Torpo L, Nieminen RM, Laasonen K, Pöykkö S (1999) Appl Phys Lett 74:221

    Article  Google Scholar 

  77. Novoselov KS, Geim AK, Morozov SV et al (2004) Science 306:666

    Article  Google Scholar 

  78. Xia J, Chen F, Li J, Tao N (2009) Nat Nanotechnol 4:505

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Office of Naval Research (ONR) for financial support of this work. Boris Dyatkin is supported by the National Research Council (NRC) Research Associateship Program (RAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Laskoski.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, T.M., Laskoski, M., Qadri, S.B. et al. Direct formulation of nanocrystalline silicon carbide/nitride solid ceramics. J Mater Sci 52, 9294–9307 (2017). https://doi.org/10.1007/s10853-017-1105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1105-7

Keywords

Navigation