Skip to main content
Log in

A new soft template-oriented method for the preparation of hollow analcime microspheres with nanosheets-assembled shells

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper highlights a controlled synthesis of two-dimensional analcime nanosheets templated by organic additives and an impressive strategy that hollow hierarchical analcime microspheres with layered shells can be assembled by taking advantage of the intrinsic growth law of material. Specifically, ultrathin analcime nanosheets were initially obtained by precisely manipulating the amounts of cetyltrimethylammonium cation (CTA+) and ethylenediaminetetraacetate (EDTA4−) in the synthesis system. As building blocks, these nanosheets then self-assembled layer by layer from outside to inside driven by the reversed crystal growth mechanism of analcime, resulting in a hollow structure with lamellar shells and enhanced specific surface area of 722.3 m2 g−1. Series of experiments were carried out in order to explore the influence of CTA+ and EDTA4− on the formation of analcime nanosheets. The results indicated that CTA+ was the micro-mesoporogen of hierarchical analcime and synergistically collaborated with EDTA4− in directing analcime nanosheets. The effect of hydrothermal temperature was discussed and a surfactant packing parameter (g = V/a 0 l) was cited to explain the behavior of organics. In addition, the investigation of hydrothermal process clearly revealed the crystallization and self-assembly process of hollow structure. And the UV Raman results unraveled that four-membered rings (4MRs) as the active building units for analcime framework were firstly formed in the synthesis gel, followed by reconstruction and self-assembly which lead to the formation of 6MRs and 8MRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45:1529–1541

    Article  Google Scholar 

  2. Li X, Zhu J, Wei B (2016) Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 45:3145–3187

    Article  Google Scholar 

  3. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater 4:e17

    Article  Google Scholar 

  4. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  Google Scholar 

  5. Hu Y, Wei J, Liang Y, Zhang H, Zhang X, Shen W, Wang H (2016) Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angew Chem 55:2048–2052

    Article  Google Scholar 

  6. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–801

    Article  Google Scholar 

  7. Zhang K, Ostraat ML (2016) Innovations in hierarchical zeolite synthesis. Catal Today 264:3–15

    Article  Google Scholar 

  8. Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356

    Article  Google Scholar 

  9. Xu W-Q, Yin Y-G, Suib SL, Edwards JC, O’Young C-L (1996) Modification of non-template synthesized ferrierite/ZSM-35 forn-Butene skeletal isomerization to isobutylene. J Catal 163:232–244

    Article  Google Scholar 

  10. Zanardi S, Alberti A, Cruciani G, Corma A, Fornés V, Brunelli M (2004) Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1). Angew Chem 116:5041–5045

    Article  Google Scholar 

  11. Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Čejka J (2013) A family of zeolites with controlled pore size prepared using a top-down method. Nat Chem 5:628–633

    Article  Google Scholar 

  12. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    Article  Google Scholar 

  13. Park W, Yu D, Na K, Jelfs KE, Slater B, Sakamoto Y, Ryoo R (2011) Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chem Mater 23:5131–5137

    Article  Google Scholar 

  14. Teng Z, Wang S, Su X, Chen G, Liu Y, Luo Z, Luo W, Tang Y, Ju H, Zhao D, Lu G (2014) Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Adv Mater 26:3741–3747

    Article  Google Scholar 

  15. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698

    Article  Google Scholar 

  16. Jin D, Park K-W, Lee JH, Song K, Kim J-G, Seo ML, Jung JH (2011) The selective immobilization of curcumin onto the internal surface of mesoporous hollow silica particles by covalent bonding and its controlled release. J Mater Chem 21:3641

    Article  Google Scholar 

  17. Teng Z, Zheng G, Dou Y, Li W, Mou CY, Zhang X, Asiri AM, Zhao D (2012) Highly ordered mesoporous silica films with perpendicular mesochannels by a simple Stober-solution growth approach. Angew Chem 51:2173–2177

    Article  Google Scholar 

  18. Dong F, Guo W, Park S-S, Ha C-S (2011) Uniform and monodisperse polysilsesquioxane hollow spheres: synthesis from aqueous solution and use in pollutant removal. J Mater Chem 21:10744

    Article  Google Scholar 

  19. Chen M, Wu L, Zhou S, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18:801–806

    Article  Google Scholar 

  20. Yang W, Li B (2014) A novel liquid template corrosion approach for layered silica with various morphologies and different nanolayer thicknesses. Nanoscale 6:2292–2298

    Article  Google Scholar 

  21. Yang W, Li B (2013) Facile fabrication of hollow silica nanospheres and their hierarchical self-assemblies as drug delivery carriers through a new single-micelle-template approach. J Mater Chem B 1:2525

    Article  Google Scholar 

  22. Wang Y, Tang C, Deng Q, Liang C, Ng DH, Kwong FL, Wang H, Cai W, Zhang L, Wang G (2010) A versatile method for controlled synthesis of porous hollow spheres. Langmuir 26:14830–14834

    Article  Google Scholar 

  23. Cho W, Lee YH, Lee HJ, Oh M (2011) Metal oxide particles: multi ball-in-ball hybrid metal oxides. Adv Mater 23:1687

    Article  Google Scholar 

  24. Ndoni S, Vigild ME, Berg RH (2003) Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers. J Am Chem Soc 125:13366–13367

    Article  Google Scholar 

  25. Li W, Deng Y, Wu Z, Qian X, Yang J, Wang Y, Gu D, Zhang F, Tu B, Zhao D (2011) Hydrothermal etching assisted crystallization: a facile route to functional yolk–shell titanate microspheres with ultrathin nanosheets-assembled double shells. J Am Chem Soc 133:15830–15833

    Article  Google Scholar 

  26. Teng Z, Su X, Zheng Y, Zhang J, Liu Y, Wang S, Wu J, Chen G, Wang J, Zhao D, Lu G (2015) A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J Am Chem Soc 137:7935–7944

    Article  Google Scholar 

  27. Chen H, Liu X, Ma X (2015) Confined synthesis of silicalite-1 hollow spheres with a lamellar shell. Scr Mater 95:31–34

    Article  Google Scholar 

  28. Wiersema GS, Thompson RW (1996) Nucleation and crystal growth of analcime from clear aluminosilicate solutions. J Mater Chem 6:1693

    Article  Google Scholar 

  29. Liu BS, Tang DC, Au CT (2005) Fabrication of analcime zeolite fibers by hydrothermal synthesis. Microporous Mesoporous Mater 86:106–111

    Article  Google Scholar 

  30. Shamspur T, Sheikhshoaie I, Mashhadizadeh MH (2005) Flame atomic absorption spectroscopy (FAAS) determination of iron(III) after preconcentration on to modified analcime zeolite with 5-((4-nitrophenylazo)-N-(2′,4′-dimethoxyphenyl))salicylaldimine by column method. J Anal At Spectrom 20:476–478

    Article  Google Scholar 

  31. Chen Qiao, Xie Fan, Zhou He (2007) Self-construction of core−shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core. J Am Chem Soc 129:13305–13312

    Article  Google Scholar 

  32. Naser Azizi S, Yousefpour M (2009) Synthesis of aluminum-rich analcime using an ethylene diamine derivative as template. Z anorg allg Chem 635:1654–1658

    Article  Google Scholar 

  33. Naser Azizi S, Yousefpour M (2010) Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. J Mater Sci 45:5692–5697. doi:10.1007/s10853-010-4637-7

    Article  Google Scholar 

  34. Atta AY, Jibril BY, Aderemi BO, Adefila SS (2012) Preparation of analcime from local kaolin and rice husk ash. Appl Clay Sci 61:8–13

    Article  Google Scholar 

  35. Samadi-Maybodi A, Pourali SM (2014) Microwave-assisted hydrothermal green synthesis of analcime icositetrahedra: insight into intermediates formed in the reversed crystal growth process. Eur J Inorg Chem 2014:1204–1210

    Article  Google Scholar 

  36. Park SH, Kim J-H, Chung C-B, Seo G (2015) Fine control of particle size by seeding and ageing under agitation in the synthesis of analcime zeolite. Korean J Chem Eng 32:2512–2518

    Article  Google Scholar 

  37. Yuan J, Yang J, Ma H, Liu C, Zhao C (2016) Hydrothermal synthesis of analcime and hydroxycancrinite from K-feldspar in Na2SiO3 solution: characterization and reaction mechanism. RSC Adv 6:54503–54509

    Article  Google Scholar 

  38. Zhou W (2010) Reversed crystal growth: implications for crystal engineering. Adv Mater 22:3086–3092

    Article  Google Scholar 

  39. Padervand M, Vossoughi M, Janfada B (2015) A novel efficient magnetic core–zeolitic shell nanocatalyst system: preparation, characterization and activity. Chem Pap 69:856–863

    Article  Google Scholar 

  40. A Corma, M Navarro, JP Pariente (1994) Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc Chem Commun 2:147–148

    Article  Google Scholar 

  41. Round CI, Williams CD, Latham K, Duke CVA (2001) Ni-ZSM-5 and Cu-ZSM-5 synthesized directly from aqueous fluoride gels. Chem Mater 13:468–472

    Article  Google Scholar 

  42. Huo Q, Margolese DI, Stucky GD (1996) Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater 8:1147–1160

    Article  Google Scholar 

  43. Auvray X, Petipas C, Anthore R, Rico I, Lattes A (1989) X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. J Phys Chem 93:7458–7464

    Article  Google Scholar 

  44. Chen X, Huang L, Li Q (1997) Hydrothermal transformation and characterization of porous silica templated by surfactants. J Phys Chem B 101:8460–8467

    Article  Google Scholar 

  45. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Mesostructure design with gemini surfactants: supercage formation in a three-dimensional hexagonal array. Science 268:1324–1327

    Article  Google Scholar 

  46. Tolbert SH, Landry CC, Stucky GD, Chmelka BF, Norby P, Hanson JC, Monnier A (2001) Phase transitions in mesostructured silica/surfactant composites: surfactant packing and the role of charge density matching†. Chem Mater 13:2247–2256

    Article  Google Scholar 

  47. Firouzi A, Kumar D, Bull L, Besier T, Sieger P, Huo Q, Walker S, Zasadzinski J, Glinka C, Nicol J et al (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143

    Article  Google Scholar 

  48. Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303

    Article  Google Scholar 

  49. Ghobarkar H, Franke W (1986) The morphology of analcime. Cryst Res Technol 21:1071–1075

    Article  Google Scholar 

  50. Liu J, Jiang G, Liu Y, Di J, Wang Y, Zhao Z, Sun Q, Xu C, Gao J, Duan A, Liu J, Wei Y, Zhao Y, Jiang L (2014) Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci Rep 4:7276

    Article  Google Scholar 

  51. Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30

    Article  Google Scholar 

  52. Knops-Gerrits P-P, De Vos DE, Feijen EJP, Jacobs PA (1997) Raman spectroscopy on zeolites. Microporous Mater 8:3–17

    Article  Google Scholar 

  53. Iyoki K, Itabashi K, Chaikittisilp W, Elangovan SP, Wakihara T, Kohara S, Okubo T (2014) Broadening the applicable scope of seed-directed, organic structure-directing agent-free synthesis of zeolite to zincosilicate components: a case of VET-type zincosilicate zeolites. Chem Mater 26:1957–1966

    Article  Google Scholar 

  54. Best DF, Larson RW, Angell CL (1973) Infrared spectroscopic investigation of zeolites and adsorbed molecules. VII. Hydroxyl groups of erionite. J Phys Chem 77:2183–2185

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the National Natural Science of Foundation of China (Grant No. 21271017), the National Science and Technology Supporting Plan of the Twelfth Five-year (No. 2014BAE12B0101) and the Fundamental Research Funds for the Central Universities (No. YS1406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Li, B., Kong, X. et al. A new soft template-oriented method for the preparation of hollow analcime microspheres with nanosheets-assembled shells. J Mater Sci 52, 9377–9390 (2017). https://doi.org/10.1007/s10853-017-1092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1092-8

Keywords

Navigation