Journal of Materials Science

, Volume 52, Issue 15, pp 9151–9165 | Cite as

Dual-surface modification of titanium alloy with anodizing treatment and bioceramic particles for enhancing prosthetic devices

  • M. V. Gonzalez Galdos
  • J. I. Pastore
  • J. Ballarre
  • S. M. Ceré
In Honor of Larry Hench


In this work, two strategies of surface modification of metallic biomedical implants are presented. An anodizing treatment onto titanium surface to enhance a barrier effect for minimizing corrosion and a bioactivation of the surface by the application of sol–gel coatings containing bioactive particles from the 45S5 Bioglass® family doped with strontium was done. The substitution of calcium by strontium (Sr) generates a local controlled release of Sr-ion to the media. Strontium is known to reduce osteoclasts activity and stimulate bone formation. Surface analysis methods as micro-Raman spectroscopy, AC/DC electrochemical tests, X-ray diffraction and different microcopies were used for determining chemical reactions and integrity in simulated body fluid solution. The deposition and dispersion of the bioactive particles in the coatings were analyzed by digital image processing tools. The presence of apatite-related compounds was confirmed by the appearance of characteristic phosphate peak at 960 cm−1 (Raman). The integrity and protection of the coating were evaluated electrochemically. The applied coating system provided a good protection of the bare metal to the aggressive fluids, even after 30 days of immersion, where the dissolution of the bioactive particles without and with Sr, and deposition of phosphate-related compounds are taking place.


Strontium Simulated Body Fluid Bioactive Glass Calcium Phosphate Cement Simulated Body Fluid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors would like to acknowledge assistance of Dr. Mariela Desimone in the micro-Raman experiments and Lic Vanesa Fuchs in the fluorescence and diffraction experiments; and to CONICET—PIP 0434-2011 and UNMPD 15G-331 for the financial support.


  1. 1.
    Jacobs JJ, Jeremy MD, Gilbert JL, Urban RM (1998) Current concept review—corrosion of metal orthopaedic implants. J Bone Jt Surg Inc 80:268–282CrossRefGoogle Scholar
  2. 2.
    Black J (1988) Does Corrosion matter? The Journal of Bone and joint surgery (Br) 70-B:517–520Google Scholar
  3. 3.
    Pennington M, Grieve R, Sekhon JS, Gregg P, Black N, van der Meulen JH (2013) Cemented, cementless, and hybrid prostheses for total hip replacement: cost effectiveness analysis. BMJ 346:f1026CrossRefGoogle Scholar
  4. 4.
    Rothman RH, Cohn JC (1990) Cemented versus cementless total hip arthroplasty: a critical review. Clin Orthop Relat Res 254:153–169Google Scholar
  5. 5.
    Ehrenfest DMD, Coelho PG, Byung-Soo K, Sul YT, Albrektsson T (2009) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28:198–206CrossRefGoogle Scholar
  6. 6.
    Albrektsson T, Branemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–170CrossRefGoogle Scholar
  7. 7.
    Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49–121CrossRefGoogle Scholar
  8. 8.
    Tengvall P, Lundström I (1992) Physico—chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134CrossRefGoogle Scholar
  9. 9.
    Wang XJ, Li YC, Lin JG, Yamada Y, Hodgson PD, Wen CE (2008) In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. Acta Biomater 4:1530–1535CrossRefGoogle Scholar
  10. 10.
    Faure J, Balamurugan A, Benhayoune H, Torres P, Balossier G, Ferreira JMF (2009) Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4 V titanium alloy. Mater Sci Eng C 29:1252–1257CrossRefGoogle Scholar
  11. 11.
    Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB (2001) Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22:1531–1539CrossRefGoogle Scholar
  12. 12.
    Karthega M, Nagarajan S, Rajendran N (2010) In vitro studies of hydrogen peroxide treated titanium for biomedical applications. Electrochim Acta 55:2201–2209CrossRefGoogle Scholar
  13. 13.
    Park J-W, Kim Y-J, Jang J-H, Kwon T-G, Bae Y-C, Suh J-Y (2010) Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomater 6:1661–1670CrossRefGoogle Scholar
  14. 14.
    Barranco V, Onofre E, Escudero ML, García-Alonso MC (2010) Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf Coat Technol 204:3783–3793CrossRefGoogle Scholar
  15. 15.
    Kumar S, Narayanan TSNS, Raman SGS, Seshadri SK (2010) Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C 30:921–927CrossRefGoogle Scholar
  16. 16.
    Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 23:491–501CrossRefGoogle Scholar
  17. 17.
    Ng BS, Annergren I, Soutar AM, Khor KA, Jarfors AEW (2005) Characterisation of a duplex TiO2/CaP coating on Ti6Al4 V for hard tissue replacement. Biomaterials 26:1087–1095CrossRefGoogle Scholar
  18. 18.
    Sul Y-T, Johansson C, Byon E, Albrektsson T (2005) The bone response of oxidized bioactive and non—bioactive titanium implants. Biomaterials 26:6720–6730CrossRefGoogle Scholar
  19. 19.
    Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147–148:424–436CrossRefGoogle Scholar
  20. 20.
    Guglielmi M (1988) Rivestimenti sottili mediante dip coating con metodo sol–gel. Revista della Staz. Sper. 4:197–199Google Scholar
  21. 21.
    Sanchez C, In M (1992) Molecular design of alkoxide precursors for the synthesis of hybrid organic-inorganic gels. J Non-Cryst Solids 147–148:1–12CrossRefGoogle Scholar
  22. 22.
    de Sanctis O, Gomez L, Pellegri N, Parodi C, Marajofsky A, Duran A (1990) Protective glass coatings on metallic substrates. J Non-Cryst Solids 121:338–343CrossRefGoogle Scholar
  23. 23.
    Krishnan V, Lakshmi T (2013) Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 4:78–83CrossRefGoogle Scholar
  24. 24.
    Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass ceramic materials to bone and muscle. J Biomed Mater Res 7:25–42CrossRefGoogle Scholar
  25. 25.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRefGoogle Scholar
  26. 26.
    Hench LL (2015) Opening paper 2015 - some comments on bioglass: four eras of discovery and development. Biomed Glasses 1:1–11CrossRefGoogle Scholar
  27. 27.
    Hench LL, Wilson J (1993) An introduction to bioceramics, advanced series in ceramics—World Scientific, Hench, Wilson eds, vol. 1Google Scholar
  28. 28.
    Ballarre J, Jimenez-Pique E, Anglada M, Pellice S, Cavalieri AL (2009) Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surf Coat Technol 203:3325–3331CrossRefGoogle Scholar
  29. 29.
    Kokubo T (2005) Design of bioactive bone substitutes based on biomineralization process. Mater Sci Eng C 25:97–104CrossRefGoogle Scholar
  30. 30.
    Li P, de Groot K (1993) Calcium phosphate formation within sol–gel prepared titania in vitro and in vivo. J Biomed Mater Res 27:1495–1500CrossRefGoogle Scholar
  31. 31.
    Oosterbeek RN, Seal CK, Seitz JM, Hyland MM (2013) Polymer-bioceramic composite coatings on magnesium for biomaterial applications. Surf Coat Technol 236:420–428CrossRefGoogle Scholar
  32. 32.
    Serra J (1982) Image analysis and mathematical morphology, vol 1. Academic Press, LondonGoogle Scholar
  33. 33.
    Serra J (1988) Image analysis and mathematical morphology, vol 2. Academic Press, LondonGoogle Scholar
  34. 34.
    Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM (2010) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res Part A 92:232–237CrossRefGoogle Scholar
  35. 35.
    Kim HW, Koh YH, Kong YM, Kang JG, Kim HE (2004) Strontium substituted calcium phosphate biphasic ceramics obtained by powder precipitation method. J Mater Sci Mater Med 15:1129–1134CrossRefGoogle Scholar
  36. 36.
    Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV (2012) Influence of strontium substitution on structure and crystallisation of Bioglass[registered sign] 45S5. J Mater Chem 22:7395–7402CrossRefGoogle Scholar
  37. 37.
    Marie PJ (2005) Strontium as therapy for osteoporosis. Curr Opin Pharmacol 5:633–636CrossRefGoogle Scholar
  38. 38.
    Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRefGoogle Scholar
  39. 39.
    Strobel LA, Hild N, Mohn D, Stark WJ, Hoppe A, Gbureck U, Horch RE, Kneser U, Boccaccini AR (2013) Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. J Nanoparticle Res 15:1780–1785CrossRefGoogle Scholar
  40. 40.
    Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31:9006–9014CrossRefGoogle Scholar
  41. 41.
    Newman SD, Lotfibakhshaiesh N, O’Donnell M, Walboomers XF, Horwood N, Jansen JA, Amis AA, Cobb JP, Stevens MM (2014) Enhanced osseous implant fixation with strontium-substituted bioactive glass coating. Tissue Eng Part A 20:1850–1857CrossRefGoogle Scholar
  42. 42.
    Gomez Sanchez A, Schreiner W, Duffó G, Ceré S (2013) Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interf Anal 45:1037–1046CrossRefGoogle Scholar
  43. 43.
    O’Donnell MD, Candarlioglu PL, Miller CA, Gentleman E, Stevens MM (2010) Materials characterisation and cytotoxic assessment of strontium- substituted bioactive glasses for bone regeneration. J Mater Chem 20:8934–8941CrossRefGoogle Scholar
  44. 44.
    Jingxian Z, Dongliang J, Weisensel L, Greil P (2004) Deflocculants for tape casting of TiO2 slurries. J Eur Ceram Soc 24:2259–2265CrossRefGoogle Scholar
  45. 45.
    Otsu N (1979) A threshold selection method from gray level histogram. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  46. 46.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S (1992) Chemical reaction of bioactive glass and glass—ceramics with a simulated body fluid. J Mater Sci Mater M 3:79–83CrossRefGoogle Scholar
  47. 47.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to produce in vivo surface—structure changes in bioactive glass—ceramic A. W. J Biomed Mater Res 24:721–734CrossRefGoogle Scholar
  48. 48.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefGoogle Scholar
  49. 49.
    Omar S, Repp F, Desimone PM, Weinkamer R, Wagermaier W, Ceré S, Ballarre J (2015) Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J Non-Cryst Solids 425:1–10CrossRefGoogle Scholar
  50. 50.
    Notingher I, Jones JR, Verrier S, Bisson I, Embanga P, Edwards P, Polak JM, Hench LL (2003) Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectroscopy 17:275–288CrossRefGoogle Scholar
  51. 51.
    Games LA, Sanchez AG, Jimenez-Pique E, Schreiner WH, Ceré SM, Ballarre J (2012) Chemical and mechanical properties of anodized cp-titanium in NH 4 H 2PO 4/NH 4F media for biomedical applications. Surf Coat Technol 206:4791–4798CrossRefGoogle Scholar
  52. 52.
    Shibata T, Zhu Y-C (1995) The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corros Sci 37:253–270CrossRefGoogle Scholar
  53. 53.
    Zhao X, Liu X, Ding C, Chu PK (2007) Effect of plasma treatment on bioactivity of TiO2 coatings. Surf Coat Technol 201:6878–6881CrossRefGoogle Scholar
  54. 54.
    Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T (2002) Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomaterials 23:491–501CrossRefGoogle Scholar
  55. 55.
    Aloia Games L, Gomez Sanchez A, Jimenez-Pique E, Schreiner WH, Ceré SM, Ballarre J (2012) Chemical and mechanical properties of anodized cp-titanium in NH4 H2PO4/NH4F media for biomedical applications. Surf Coat Technol 206:4791–4798CrossRefGoogle Scholar
  56. 56.
    Yang J, Chen J, Song J (2009) Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and Raman spectra. Vib Spectrosc 50:178–184CrossRefGoogle Scholar
  57. 57.
    Depla A, Verheyen E, Veyfeyken A, Van Houteghem M, Houthoofd K, Van Speybroeck V, Waroquier M, Kirschhock CEA, Martens JA (2011) UV-Raman and 29Si NMR spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J Phys Chem C 115:11077–11088CrossRefGoogle Scholar
  58. 58.
    De Aza PN, Luklinska ZB, Anseau MR, Hector M, Guitián F, De Aza S (2000) Reactivity of a wollastonite–tricalcium phosphate Bioeutectic® ceramic in human parotid saliva. Biomaterials 21:1735–1741CrossRefGoogle Scholar
  59. 59.
    Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRefGoogle Scholar
  60. 60.
    Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface layers on bioactive glasses. Biomaterials 15:865–870CrossRefGoogle Scholar
  61. 61.
    Cavalli M, Gnappi G, Montenero A, Bersani D, Lottici PP, Kaciulis S, Mattogno G, Fini M (2001) Hydroxy- and fluorapatite films on Ti alloy substrates: sol–gel preparation and characterization. J Mater Sci 36:3253–3260. doi: 10.1023/A:1017998722380 CrossRefGoogle Scholar
  62. 62.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T, Yamamuro T (1993) Process of formation of bone-like apatite layer on silica gel. J Mater Sci Mater M 4:127–131CrossRefGoogle Scholar
  63. 63.
    Omar S, Pastore J, Bouchet A, Pellice S, Ballarín V, Ceré S, Ballarre J (2016) Biomedical glasses, p 10Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. V. Gonzalez Galdos
    • 1
  • J. I. Pastore
    • 2
    • 3
  • J. Ballarre
    • 1
    • 2
  • S. M. Ceré
    • 1
    • 2
  1. 1.Material’s Science and Technology Research InstituteINTEMA - Universidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina
  2. 2.National Research Council (CONICET)Buenos AiresArgentina
  3. 3.Digital Image Processing Lab, ICyTEUniversidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina

Personalised recommendations