Advertisement

Journal of Materials Science

, Volume 52, Issue 14, pp 8455–8464 | Cite as

Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection

  • Jingjing Qin
  • Lang Chen
  • Chenghui Zhao
  • Qixiang Lin
  • Shaowei Chen
Polymers

Abstract

A novel porous aerogel of cellulose nanofiber (CNF)/cationic water-soluble poly[9,9-bis[3′-(N,N-dimethy)-N-ethylammonium)propyl)-2,7-fluorene-alt-1,4-phenylene]dibromide (CPFD) is prepared by freeze drying. CNF can effectively prevent aggregation of the conjugated polymer CPFD backbones. The CNF/CPFD hybrid aerogel is use for the detection of nitroaromatic (NAC) vapors. Due to the porous structure, the CNF/CPFD hybrid aerogel possesses a large number of accessible cavities, which could be sufficiently large to allow the diffusion of NAC vapors into the aerogel. As a result, the CNF/CPFD aerogel sensor shows high sensitivity toward NAC vapors. For 120-s exposure, the fluorescence quenching efficiency of the CNF/CPFD aerogel sensor toward 2,4-dinitrotoluene vapor is up to 85.9%, which is much larger than that of the spin-cast CPFD film. Furthermore, the sensing performance of the CNF/CPFD hybrid aerogel is not heavily dependent on the thickness, and the sensing process of the CNF/CPFD aerogel sensor is reversible.

Keywords

Picric Acid Boronic Acid DNPH Cellulose Nanofiber Conjugate Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    An N, Gonzalez CM, Sinelnikov R, Newman W, Sun S, Lockwood R, Veinot JGC, Meldrum A (2016) Detection of nitroaromatics in the solid, solution, and vapor phases using silicon quantum dot sensors. Nanotechnology. doi: 10.1088/0957-4484/27/10/105501 Google Scholar
  2. 2.
    Zarei AR, Ghazanchayi B (2016) Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized polyvinyl alcohol) membrane. Talanta 150:162–168CrossRefGoogle Scholar
  3. 3.
    Kandpal M, Bandela AK, Hinge VK, Rao VR, Rao CP (2013) Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of Calix 4 arene and delineation of the features of the complex by molecular dynamics. ACS Appl Mater Int 5(24):13448–13456CrossRefGoogle Scholar
  4. 4.
    Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296CrossRefGoogle Scholar
  5. 5.
    Bandela AK, Bandaru S, Rao CP (2015) A fluorescent 1,3-diaminonaphthalimide conjugate of Calix 4 arene for sensitive and selective detection of trinitrophenol: spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips. Chem-Eur J 21(38):13364–13374CrossRefGoogle Scholar
  6. 6.
    Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 16(28):2871–2883CrossRefGoogle Scholar
  7. 7.
    Walsh ME (2001) Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54(3):427–438CrossRefGoogle Scholar
  8. 8.
    Sylvia JM, Janni JA, Klein JD, Spencer KM (2000) Surface-enhanced Raman detection of 1,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal Chem 72(23):5834–5840CrossRefGoogle Scholar
  9. 9.
    Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44(22):8019–8061CrossRefGoogle Scholar
  10. 10.
    Li J, Kendig CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J Am Chem Soc 129(51):15911–15918CrossRefGoogle Scholar
  11. 11.
    Zhou L-L, Li M, Lu H-Y, Chen C-F (2016) Benzo 5 helicene-based conjugated polymers: synthesis, photophysical properties, and application for the detection of nitroaromatic explosives. Polym Chem 7(2):310–318CrossRefGoogle Scholar
  12. 12.
    Niu Q, Gao K, Wu W (2014) Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Carbohyd Polym 110:47–52CrossRefGoogle Scholar
  13. 13.
    Yang JS, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120(46):11864–11873CrossRefGoogle Scholar
  14. 14.
    Leng H, Niu Q, Wu W (2013) Insoluble porous conjugated polymer films via phase separation and photo-crosslinking for the trace detection of 2,4-dinitrotoluene. Polym Int 62(8):1187–1191CrossRefGoogle Scholar
  15. 15.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  16. 16.
    Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165CrossRefGoogle Scholar
  17. 17.
    Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809CrossRefGoogle Scholar
  18. 18.
    Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. Acs Appl Mater Int 7(5):3263–3271CrossRefGoogle Scholar
  19. 19.
    Feng J, Li Y, Yang M (2010) Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sens Actuator B Chem 145(1):438–443CrossRefGoogle Scholar
  20. 20.
    Wang X, Guo Y, Li D, Chen H, R-C Sun (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48(45):5569–5570CrossRefGoogle Scholar
  21. 21.
    Ding L, Liu Y, Cao Y, Wang L, Xin Y, Fang Y (2012) A single fluorescent self-assembled monolayer film sensor with discriminatory power. J Mater Chem 22(23):11574–11582CrossRefGoogle Scholar
  22. 22.
    Huang F, Wu HB, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16(4):708–716CrossRefGoogle Scholar
  23. 23.
    Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3(35):15058–15064CrossRefGoogle Scholar
  24. 24.
    Leng H, Wu W (2012) Synthesis of a novel fluorene-based conjugated polymer with pendent bulky caged adamantane moieties and its application in the detection of trace DNT explosives. React Funct Polym 72(3):206–211CrossRefGoogle Scholar
  25. 25.
    Liu T, Ding L, Zhao K, Wang W, Fang Y (2012) Single-layer assembly of pyrene end-capped terthiophene and its sensing performances to nitroaromatic explosives. J Mater Chem 22(3):1069–1077CrossRefGoogle Scholar
  26. 26.
    Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013) Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67CrossRefGoogle Scholar
  27. 27.
    Cornil J, dos Santos DA, Crispin X, Silbey R, Brédas JL (1998) Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J Am Chem Soc 120(6):1289–1299CrossRefGoogle Scholar
  28. 28.
    Pella PA (1976) Generator for producing trace vapor concentrations of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and ethylene glycol dinitrate for calibrating explosives vapor detectors. Anal Chem 48(11):1632–1637CrossRefGoogle Scholar
  29. 29.
    Zhu W, Tao S, C-A Tao, Li W, Lin C, Li M, Wen Y, Li G (2011) Hierarchically imprinted porous films for rapid and selective detection of explosives. Langmuir 27(13):8451–8457CrossRefGoogle Scholar
  30. 30.
    Wang D-H, Cui Y-Z, Tao F-R, Niu Q-F, Li T-D, Xu H (2016) A novel film of conjugated polymer grafted onto gelatin for detecting nitroaromatics vapor with excellent inhibiting photobleaching. Sens Actuator B Chem 225:319–326CrossRefGoogle Scholar
  31. 31.
    He G, Zhang G, Lue F, Fang Y (2009) Fluorescent film sensor for vapor-phase nitroaromatic explosives via monolayer assembly of oligo(diphenylsilane) on glass plate surfaces. Chem Mater 21(8):1494–1499CrossRefGoogle Scholar
  32. 32.
    Beyazkilic P, Yildirim A, Bayindir M (2014) Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. ACS Appl Mater Int 6(7):4997–5004CrossRefGoogle Scholar
  33. 33.
    Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jingjing Qin
    • 1
    • 2
  • Lang Chen
    • 1
  • Chenghui Zhao
    • 2
  • Qixiang Lin
    • 3
  • Shaowei Chen
    • 4
  1. 1.School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Fuzhou Command Academy of Armed Police ForceFuzhouChina
  3. 3.Armed Police Force Engineering UniversityXi’anChina
  4. 4.Fujian Division of the Chinese People’s Armed Police ForceFujianChina

Personalised recommendations