Journal of Materials Science

, Volume 52, Issue 14, pp 8518–8525 | Cite as

First-principles identification of novel double perovskites for water-splitting applications

  • G. Pilania
  • A. Mannodi-Kanakkithodi
Original Paper


Identification of new materials for photo-electrochemical conversion of water into hydrogen and oxygen using visible solar light is one of the grand challenges of our times. Toward this goal, here we employ a hierarchy of down-selection steps based on structural constraints, thermodynamic stability, constraints on bandgap and band-edge positions to identify potential candidates residing in a target double perovskite chemical space. The adopted screening strategy results in four new promising candidate materials, which were studied in greater detail using first-principles computations for their thermodynamic stability, electronic structure and octahedral structural distortions. Our theoretical investigation is expected to serve as a motivation for future experimental efforts targeted toward realizing these identified promising materials.


Perovskite Rocksalt Chemical Space Conduction Band Edge Ground State Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



GP acknowledges support from the Los Alamos National Laboratory’s LDRD program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the (U.S.) Department of Energy under contract DE-AC52-06NA25396. Funding was provided by Laboratory Directed Research and Development (Grant No. 20140679PRD3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary material

10853_2017_1060_MOESM1_ESM.pdf (131 kb)
Supplementary material 1 (pdf 131 KB)


  1. 1.
    Fleming GR, Ratner MA (2008) Grand challenges in basic energy sciences. Phys Today 61:28–33CrossRefGoogle Scholar
  2. 2.
    Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, OntarioGoogle Scholar
  3. 3.
    Vasala S, Karppinen M (2014) A2B′B″O6 perovskites: a review. Prog Solid State Chem 43:1–36CrossRefGoogle Scholar
  4. 4.
    King G, Thimmaiah S, Dwivedi A, Woodward PM (2007) Synthesis and characterization of new \(\text{AA}^{\prime}\text{BWO}_6\) perovskites exhibiting simultaneous ordering of A-site and B-site cations. Chem Mater 19:6451–6458CrossRefGoogle Scholar
  5. 5.
    Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO\(_3\) (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106:12441–12447CrossRefGoogle Scholar
  6. 6.
    Yamasita D, Takata T, Hara M, Kondo J, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172:591–595CrossRefGoogle Scholar
  7. 7.
    Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci 5:5814–5819CrossRefGoogle Scholar
  8. 8.
    Castelli IE, Thygesen KS, Jacobsen KW (2013) Bandgap engineering of double perovskites for one- and two-photon water splitting. MRS Proc. doi: 10.1557/opl.2013.450
  9. 9.
    Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New YorkCrossRefGoogle Scholar
  10. 10.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  11. 11.
    Huser F, Olsen T, Thygesen KS (2013) Quasiparticle GW calculations for solids, molecules, and two-dimensional materials. Phys Rev B 87:235132CrossRefGoogle Scholar
  12. 12.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406CrossRefGoogle Scholar
  13. 13.
    Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  14. 14.
    Gritsenko O, van Leeuwen R, van Lenthe E, Baerends JE (1995) Self-consistent approximation to the Kohn–Sham exchange potential. Phys Rev A 51:1944CrossRefGoogle Scholar
  15. 15.
    Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn–Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106CrossRefGoogle Scholar
  16. 16.
    Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14:36CrossRefGoogle Scholar
  17. 17.
    Castelli IE et al (2015) New light? Harvesting materials using accurate and efficient bandgap calculations. Adv Energy Mater 5:1400915CrossRefGoogle Scholar
  18. 18.
    Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796CrossRefGoogle Scholar
  19. 19.
    Aryasetiawan F, Gunnarsson O (1998) The GW method. Rep Prog Phys 61:237CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  21. 21.
    Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906CrossRefGoogle Scholar
  22. 22.
    Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375CrossRefGoogle Scholar
  23. 23.
    Wu Y, Chan MKY, Ceder G (2011) Prediction of semiconductor band edge positions in aqueous environments from first principles. Phys Rev B 83:235301CrossRefGoogle Scholar
  24. 24.
    Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Materials Project—A materials genome approach. Accessed 24 Feb 2017
  27. 27.
    Howard CJ, Kennedy BJ, Woodward PM (2003) Ordered double perovskites? A group-theoretical analysis. Acta Cryst B 59:463–471CrossRefGoogle Scholar
  28. 28.
    Knapp MC, Woodward PM (2006) A-site cation ordering in AA′ BB′ O6 perovskites. J Solid State Chem 179:1076–1085CrossRefGoogle Scholar
  29. 29.
    Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr B 28:3384–3392CrossRefGoogle Scholar
  30. 30.
    Berger RF, Neaton JB (2012) Computational design of low-band-gap double perovskites. Phys Rev B 86:165211CrossRefGoogle Scholar
  31. 31.
    Ravichandran J et al (2014) Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater 13:168–172CrossRefGoogle Scholar
  32. 32.
    Schlom DG et al (2014) Elastic strain engineering of ferroic oxides. MRS Bull 39:118–130CrossRefGoogle Scholar
  33. 33.
    Brandle CD, Fratello VJ (1990) Preparation of perovskite oxides for high Tc superconductor substrates. J Mater Res 5:2160–2164. doi: 10.1557/JMR.1990.2160 CrossRefGoogle Scholar
  34. 34.
    Schlom DG, Haeni JH, Lettieri J, Theis CD, Tian W, Jiang JC, Pan XQ (2001) Oxide nano-engineering using MBE. Mater Sci Eng B 87:282–291CrossRefGoogle Scholar
  35. 35.
    Gorbenko OY, Samoilenkov SV, Graboy IE, Kaul AR (2002) Epitaxial stabilization of oxides in thin films. Chem Mater 14:4026–4043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Materials Science and Engineering and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations