Skip to main content

Advertisement

Log in

First-principles identification of novel double perovskites for water-splitting applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Identification of new materials for photo-electrochemical conversion of water into hydrogen and oxygen using visible solar light is one of the grand challenges of our times. Toward this goal, here we employ a hierarchy of down-selection steps based on structural constraints, thermodynamic stability, constraints on bandgap and band-edge positions to identify potential candidates residing in a target double perovskite chemical space. The adopted screening strategy results in four new promising candidate materials, which were studied in greater detail using first-principles computations for their thermodynamic stability, electronic structure and octahedral structural distortions. Our theoretical investigation is expected to serve as a motivation for future experimental efforts targeted toward realizing these identified promising materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fleming GR, Ratner MA (2008) Grand challenges in basic energy sciences. Phys Today 61:28–33

    Article  Google Scholar 

  2. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Ontario

    Google Scholar 

  3. Vasala S, Karppinen M (2014) A2B′B″O6 perovskites: a review. Prog Solid State Chem 43:1–36

    Article  Google Scholar 

  4. King G, Thimmaiah S, Dwivedi A, Woodward PM (2007) Synthesis and characterization of new \(\text{AA}^{\prime}\text{BWO}_6\) perovskites exhibiting simultaneous ordering of A-site and B-site cations. Chem Mater 19:6451–6458

    Article  Google Scholar 

  5. Kato H, Kobayashi H, Kudo A (2002) Role of Ag+ in the band structures and photocatalytic properties of AgMO\(_3\) (M: Ta and Nb) with the perovskite structure. J Phys Chem B 106:12441–12447

    Article  Google Scholar 

  6. Yamasita D, Takata T, Hara M, Kondo J, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172:591–595

    Article  Google Scholar 

  7. Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ Sci 5:5814–5819

    Article  Google Scholar 

  8. Castelli IE, Thygesen KS, Jacobsen KW (2013) Bandgap engineering of double perovskites for one- and two-photon water splitting. MRS Proc. doi:10.1557/opl.2013.450

  9. Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, New York

    Book  Google Scholar 

  10. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  11. Huser F, Olsen T, Thygesen KS (2013) Quasiparticle GW calculations for solids, molecules, and two-dimensional materials. Phys Rev B 87:235132

    Article  Google Scholar 

  12. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  13. Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  14. Gritsenko O, van Leeuwen R, van Lenthe E, Baerends JE (1995) Self-consistent approximation to the Kohn–Sham exchange potential. Phys Rev A 51:1944

    Article  Google Scholar 

  15. Kuisma M, Ojanen J, Enkovaara J, Rantala TT (2010) Kohn–Sham potential with discontinuity for band gap materials. Phys Rev B 82:115106

    Article  Google Scholar 

  16. Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14:36

    Article  Google Scholar 

  17. Castelli IE et al (2015) New light? Harvesting materials using accurate and efficient bandgap calculations. Adv Energy Mater 5:1400915

    Article  Google Scholar 

  18. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796

    Article  Google Scholar 

  19. Aryasetiawan F, Gunnarsson O (1998) The GW method. Rep Prog Phys 61:237

    Article  Google Scholar 

  20. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  21. Heyd J, Scuseria GE, Ernzerhof E (2006) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 124:219906

    Article  Google Scholar 

  22. Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T (2016) Machine learning bandgaps of double perovskites. Sci Rep 6:19375

    Article  Google Scholar 

  23. Wu Y, Chan MKY, Ceder G (2011) Prediction of semiconductor band edge positions in aqueous environments from first principles. Phys Rev B 83:235301

    Article  Google Scholar 

  24. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  Google Scholar 

  25. ICSDWeb. http://www.fiz-karlsruhe.de/icsd_web.html

  26. Materials Project—A materials genome approach. http://materialsproject.org/. Accessed 24 Feb 2017

  27. Howard CJ, Kennedy BJ, Woodward PM (2003) Ordered double perovskites? A group-theoretical analysis. Acta Cryst B 59:463–471

    Article  Google Scholar 

  28. Knapp MC, Woodward PM (2006) A-site cation ordering in AA′ BB′ O6 perovskites. J Solid State Chem 179:1076–1085

    Article  Google Scholar 

  29. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr B 28:3384–3392

    Article  Google Scholar 

  30. Berger RF, Neaton JB (2012) Computational design of low-band-gap double perovskites. Phys Rev B 86:165211

    Article  Google Scholar 

  31. Ravichandran J et al (2014) Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater 13:168–172

    Article  Google Scholar 

  32. Schlom DG et al (2014) Elastic strain engineering of ferroic oxides. MRS Bull 39:118–130

    Article  Google Scholar 

  33. Brandle CD, Fratello VJ (1990) Preparation of perovskite oxides for high Tc superconductor substrates. J Mater Res 5:2160–2164. doi:10.1557/JMR.1990.2160

    Article  Google Scholar 

  34. Schlom DG, Haeni JH, Lettieri J, Theis CD, Tian W, Jiang JC, Pan XQ (2001) Oxide nano-engineering using MBE. Mater Sci Eng B 87:282–291

    Article  Google Scholar 

  35. Gorbenko OY, Samoilenkov SV, Graboy IE, Kaul AR (2002) Epitaxial stabilization of oxides in thin films. Chem Mater 14:4026–4043

    Article  Google Scholar 

Download references

Acknowledgements

GP acknowledges support from the Los Alamos National Laboratory’s LDRD program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the (U.S.) Department of Energy under contract DE-AC52-06NA25396. Funding was provided by Laboratory Directed Research and Development (Grant No. 20140679PRD3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pilania.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilania, G., Mannodi-Kanakkithodi, A. First-principles identification of novel double perovskites for water-splitting applications. J Mater Sci 52, 8518–8525 (2017). https://doi.org/10.1007/s10853-017-1060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1060-3

Keywords

Navigation