Advertisement

Journal of Materials Science

, Volume 52, Issue 13, pp 7698–7708 | Cite as

Self-assembled high-performance graphene oxide fibers using ionic liquid as coagulating agent

  • Dong Zhang
  • Li Peng
  • Naien Shi
  • Youhai Yu
  • Yonggang Min
  • Arthur J. Epstein
Composites
  • 393 Downloads

Abstract

An efficient strategy for fabricating high-performance GO fibers (GFs) by using ionic liquids as coagulating agent via wet-spinning technique was reported for the first time. The interactions between the functional groups of the GO sheets and the ionic liquids cations could be tuned by choosing ionic liquids cations with designed structure, yielding GFs with varied mechanical properties. No organic solvent or postdrawing processes involved makes this process green and facile.

Keywords

Ionic Liquid Graphene Oxide Expanded Graphite Coagulation Bath High Packing Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Nanjing University of Posts and Telecommunications basic research program (NY 212002), the Ministry of Education of China Innovative Research Team in University (IRT1148), Key Project of National High Technology Research of China (2011AA050526) and Director Foundation of Xi’an Institute of Optics and Precision Mechanics (No. Y455A41ZZ0).

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi: 10.1038/nature04233 CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204. doi: 10.1038/nature04235 CrossRefGoogle Scholar
  4. 4.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi: 10.1021/nl0731872 CrossRefGoogle Scholar
  5. 5.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  6. 6.
    Zangmeister CD, Ma X, Zachariah MR (2012) Restructuring of graphene oxide sheets into monodisperse nanospheres. Chem Mater 24:2554–2557. doi: 10.1021/cm301112j CrossRefGoogle Scholar
  7. 7.
    Luo J, Jang HD, Sun T et al (2011) Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5:8943–8949. doi: 10.1021/nn203115u CrossRefGoogle Scholar
  8. 8.
    Xu Z, Gao C (2011) Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun 2:571–580. doi: 10.1038/ncomms1583 CrossRefGoogle Scholar
  9. 9.
    Jalili R, Aboutalebi SH, Esrafilzadeh D et al (2013) Scalable one‐step wet‐spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv Func Mater 23:5345–5354. doi: 10.1002/adfm.201300765 CrossRefGoogle Scholar
  10. 10.
    Xu Z, Gao C (2014) Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc Chem Res 47:1267–1276. doi: 10.1021/ar4002813 CrossRefGoogle Scholar
  11. 11.
    Xu Z, Gao C (2015) Graphene fiber: a new trend in carbon fibers. Mater Today 18:480–492. doi: 10.1016/j.mattod.2015.06.009 CrossRefGoogle Scholar
  12. 12.
    Xu Z, Liu Y, Zhao X et al (2016) Ultrastiff and strong graphene fibers via full‐scale synergetic defect engineering. Adv Mater 28:6449–6456. doi: 10.1002/adma.201506426 CrossRefGoogle Scholar
  13. 13.
    Xu Z, Sun H, Zhao X, Gao C (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25:188–193. doi: 10.1002/adma.201203448 CrossRefGoogle Scholar
  14. 14.
    Liu Y, Xu Z, Zhan J, Li P, Gao C (2016) Superb electrically conductive graphene fibers via doping strategy. Adv Mater 28:7941–7947. doi: 10.1002/adma.201602444 CrossRefGoogle Scholar
  15. 15.
    Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. doi: 10.1038/nature06016 CrossRefGoogle Scholar
  16. 16.
    Mo S, Peng L, Yuan C et al (2015) Enhanced properties of poly (vinyl alcohol) composite films with functionalized graphene. RSC Adv. 5:97738–97745. doi: 10.1039/C5RA15984A CrossRefGoogle Scholar
  17. 17.
    Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330. doi: 10.1021/nn101187z CrossRefGoogle Scholar
  18. 18.
    Tang W, Peng L, Yuan C et al (2015) Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth Met 202:140–146. doi: 10.1016/j.synthmet.2015.01.031 CrossRefGoogle Scholar
  19. 19.
    Huang T, Zheng B, Kou L et al (2013) Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3:23957–23962. doi: 10.1039/C3RA44935A CrossRefGoogle Scholar
  20. 20.
    Chang Y, Han G, Fu D, Liu F, Li M, Li Y (2014) Larger-scale fabrication of N-doped graphene-fiber mats used in high-performance energy storage. J Power Sources 252:113–121CrossRefGoogle Scholar
  21. 21.
    Cheng H, Liu J, Zhao Y et al (2013) Graphene fibers with predetermined deformation as moisture‐triggered actuators and robots. Angew Chem Int Ed 52:10482–10486. doi: 10.1002/anie.201304358 CrossRefGoogle Scholar
  22. 22.
    Dong Z, Jiang C, Cheng H et al (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24:1856–1861. doi: 10.1002/adma.201200170 CrossRefGoogle Scholar
  23. 23.
    Hu C, Zhai X, Liu L, Zhao Y, Jiang L, Qu L (2013) Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci Rep 3:2065–2074. doi: 10.1038/srep02065 Google Scholar
  24. 24.
    Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2:613–619. doi: 10.1038/srep00613 CrossRefGoogle Scholar
  25. 25.
    Kim YS, Kang JH, Kim T et al (2014) Easy preparation of readily self-assembled high-performance graphene oxide fibers. Chem Mater 26:5549–5555. doi: 10.1021/cm502614w CrossRefGoogle Scholar
  26. 26.
    Kim TY, Lee HW, Stoller M et al (2011) High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442. doi: 10.1021/nn101968p CrossRefGoogle Scholar
  27. 27.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefGoogle Scholar
  28. 28.
    Peng J, Hou C, Hu X (2012) Determination of metronidazole in pharmaceutical dosage forms based on reduction at graphene and ionic liquid composite film modified electrode. Sens Actuators B Chem 169:81–87. doi: 10.1016/j.snb.2012.03.040 CrossRefGoogle Scholar
  29. 29.
    Shao Q, Tang J, Lin Y et al (2015) Ionic liquid modified graphene for supercapacitors with high rate capability. Electrochim Acta 176:1441–1446. doi: 10.1016/j.electacta.2015.07.070 CrossRefGoogle Scholar
  30. 30.
    Lee J-S, Lee T, Song H-K, Cho J, Kim B-S (2011) Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy Environ Sci 4:4148–4154. doi: 10.1039/C1EE01942B CrossRefGoogle Scholar
  31. 31.
    Ma C, Peng L, Feng Y et al (2016) Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application. Synth Met 220:227–235. doi: 10.1016/j.synthmet.2016.06.008 CrossRefGoogle Scholar
  32. 32.
    Chen L, He Y, Chai S, Qiang H, Chen F, Fu Q (2013) Toward high performance graphene fibers. Nanoscale 5:5809–5815. doi: 10.1039/C3NR01083J CrossRefGoogle Scholar
  33. 33.
    Choi BG, Yang M, Jung SC et al (2013) Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. ACS Nano 7:2453–2460. doi: 10.1021/nn305750s CrossRefGoogle Scholar
  34. 34.
    Xiang C, Young CC, Wang X et al (2013) Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv Mater 25:4592–4597. doi: 10.1002/adma.201301065 CrossRefGoogle Scholar
  35. 35.
    Matsuo Y, Niwa T, Sugie Y (1999) Preparation and characterization of cationic surfactant-intercalated graphite oxide. Carbon 37:897–901. doi: 10.1016/S0008-6223(98)00226-7 CrossRefGoogle Scholar
  36. 36.
    Jiang H, Yang W, Chai S, Pu S, Chen F, Fu Q (2016) Property enhancement of graphene fiber by adding small loading of cellulose nanofiber. Nanocomposites 2:8–17. doi: 10.1080/20550324.2016.1160495 CrossRefGoogle Scholar
  37. 37.
    Meng F, Lu W, Li Q, Byun J-H, Oh Y, Chou T-W (2015) Graphene‐based fibers: a review. Adv Mater 27:5113. doi: 10.1002/adma.201501126 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Advanced MaterialsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical EngineeringNanjing Tech UniversityNanjingChina
  3. 3.Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of ScienceXi’anChina
  4. 4.Department of PhysicsThe Ohio State UniversityColumbusUSA
  5. 5.Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations