Journal of Materials Science

, Volume 52, Issue 13, pp 7768–7780 | Cite as

MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries

  • Qingmeng Gan
  • Kuangmin Zhao
  • Suqin Liu
  • Zhen He
Energy materials


The C–ZnCo2O4–ZnO nanorod arrays (NRAs), which consist of MOF-derived carbon coating on ZnCo2O4–ZnO NRAs, are rational designed and synthesized via a facile template-based solution route on Ti foil and used as high-performance anode for lithium-ion batteries (LIBs). The uniform coated MOF-derived carbon layers on the ZnCo2O4–ZnO nanorods surface can serve as a conductive substrate as well as buffer layer to restrain volume expansion during charge–discharge process. When tested as anodes for LIBs, the C–ZnCo2O4–ZnO NRAs show high reversible capacity of 1318 mA h g−1 at 0.2 A g−1 after 150 charge–discharge cycles. Furthermore, C–ZnCo2O4–ZnO NRAs also exhibit brilliant rate performance of 886.2, 812.8, 732.2 and 580.6 mA h g−1 at 0.5, 1, 2 and 5 A g−1, respectively. The outstanding lithium storage performance of C–ZnCo2O4–ZnO NRAs could be ascribed to the stimulated kinetics of ion diffusion and electron transport originated from the shortened lithium-ion diffusion pathway and improved electronic conductivity benefit from uniformly coating MOF-derived carbon.


Co3O4 Discharge Capacity Electrochemical Performance Nanorod Array Solid Electrolyte Interphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Nature Science Foundation of China (Nos: 51372278 and 21303270).

Supplementary material

10853_2017_1043_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2935 kb)


  1. 1.
    Pan L, Zhao H, Shen W, Dong X, Xu J (2013) Surfactant-assisted synthesis of a Co3O4/reduced graphene oxide composite as a superior anode material for Li-ion batteries. J Mater Chem A 1:7159–7166. doi: 10.1039/c3ta01498c CrossRefGoogle Scholar
  2. 2.
    Wang Y, Yan F, Liu SW et al (2013) Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. J Mater Chem A 1:5212–5216. doi: 10.1039/c3ta10559h CrossRefGoogle Scholar
  3. 3.
    Zhuo L, Wu Y, Ming J et al (2013) Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1:1141–1147. doi: 10.1039/c2ta00284a CrossRefGoogle Scholar
  4. 4.
    Qiu Y, Yang S, Deng H, Jin L, Li W (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20:4439–4444. doi: 10.1039/c0jm00101e CrossRefGoogle Scholar
  5. 5.
    Sun J, Li D, Xia Y et al (2015) Co3O4 nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage. Chem Commun (Camb) 51:16267–16270. doi: 10.1039/c5cc06160a CrossRefGoogle Scholar
  6. 6.
    Zhu Y, Cao C, Zhang J, Xu X (2015) Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 3:9556–9564. doi: 10.1039/c5ta00808e CrossRefGoogle Scholar
  7. 7.
    Wang Y, Ke J, Zhang Y, Huang Y (2015) Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode materials for high-performance lithium-ion batteries. J Mater Chem A 3:24303–24308. doi: 10.1039/c5ta06949a CrossRefGoogle Scholar
  8. 8.
    Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861. doi: 10.1002/adfm.200600997 CrossRefGoogle Scholar
  9. 9.
    Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. Acs Nano 8:6297–6303. doi: 10.1021/nn501783n CrossRefGoogle Scholar
  10. 10.
    Park HJ, Kim J, Choi NJ, Song H, Lee DS (2016) Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. Acs Appl Mater Interfaces 8:3233–3240. doi: 10.1021/acsami.5b10862 CrossRefGoogle Scholar
  11. 11.
    Xu X, Cao K, Wang Y, Jiao L (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4:6042–6047. doi: 10.1039/c6ta00723f CrossRefGoogle Scholar
  12. 12.
    Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011. doi: 10.1021/nl300794f CrossRefGoogle Scholar
  13. 13.
    Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921. doi: 10.1039/C2JM00094F CrossRefGoogle Scholar
  14. 14.
    Li Z, Yin L (2015) Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J Mater Chem A 3:21569–21577. doi: 10.1039/c5ta05733g CrossRefGoogle Scholar
  15. 15.
    Cheng H, Lu ZG, Deng JQ, Chung CY, Zhang K, Li YY (2010) A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 3:895–901. doi: 10.1007/s12274-010-0063-z CrossRefGoogle Scholar
  16. 16.
    Li Q, Lu XF, Xu H, Tong YX, Li GR (2014) Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors. Acs Appl Mater Interfaces 6:2726–2733. doi: 10.1021/am405271q CrossRefGoogle Scholar
  17. 17.
    Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603. doi: 10.1021/nl5004174 CrossRefGoogle Scholar
  18. 18.
    Feckl JM, Fominykh K, Döblinger M et al (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem Int 51:7459–7463. doi: 10.1002/anie.201201463 CrossRefGoogle Scholar
  19. 19.
    Jung HG, Myung ST, Chong SY et al (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345–1351. doi: 10.1039/C0EE00620C CrossRefGoogle Scholar
  20. 20.
    Wang YQ, Gu L, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134:7874–7879. doi: 10.1021/ja301266w CrossRefGoogle Scholar
  21. 21.
    Worrall SD, Bissett MA, Hirunpinyopas W, Attfield MP, Dryfe RAW (2016) Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. J Mater Chem C 4:8687–8695. doi: 10.1039/c6tc03496a CrossRefGoogle Scholar
  22. 22.
    Quartarone E, Dall’Asta V, Resmini A et al (2016) Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J Power Sources 320:314–321. doi: 10.1016/j.jpowsour.2016.04.107 CrossRefGoogle Scholar
  23. 23.
    Feng Y, Zou R, Xia D, Liu L, Wang X (2013) Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials. J Mater Chem A 1:9654–9658. doi: 10.1039/c3ta11538k CrossRefGoogle Scholar
  24. 24.
    Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504. doi: 10.1002/anie.201303971 CrossRefGoogle Scholar
  25. 25.
    Geng H, Ang H, Ding X et al (2016) Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8:2967–2973. doi: 10.1039/c5nr08570e CrossRefGoogle Scholar
  26. 26.
    Zhang X, Chen H, Xie Y, Guo J (2014) Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. J Mater Chem A 2:3912–3918. doi: 10.1039/c3ta14317a CrossRefGoogle Scholar
  27. 27.
    Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053. doi: 10.1039/c4ta00200h CrossRefGoogle Scholar
  28. 28.
    Zhang G, Hou S, Zhang H et al (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405. doi: 10.1002/adma.201405222 CrossRefGoogle Scholar
  29. 29.
    Liu B, Shioyama H, Akita T, Xu Q (2008) Metal–organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391. doi: 10.1021/ja7106146 CrossRefGoogle Scholar
  30. 30.
    Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19. doi: 10.1039/c2ta00278g CrossRefGoogle Scholar
  31. 31.
    Zhong S, Zhan C, Cao D (2015) Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85:51–59. doi: 10.1016/j.carbon.2014.12.064 CrossRefGoogle Scholar
  32. 32.
    Cheng F, Li WC, Zhu JN, Zhang WP, Lu AH (2016) Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in situ growth of crystalline ZIF-8 on a binary metal oxide. Nano Energy 19:486–494. doi: 10.1016/j.nanoen.2015.10.033 CrossRefGoogle Scholar
  33. 33.
    Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185. doi: 10.1039/c1ee01263k CrossRefGoogle Scholar
  34. 34.
    Zhan WW, Kuang Q, Zhou JZ, Kong XJ, Xie ZX, Zheng LS (2013) Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J Am Chem Soc 135:1926–1933. doi: 10.1021/ja311085e CrossRefGoogle Scholar
  35. 35.
    Liu X, Chang Z, Luo L et al (2014) Hierarchical ZnxCo3−xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem Mater 26:1889–1895. doi: 10.1021/cm4040903 CrossRefGoogle Scholar
  36. 36.
    Menezes PW, Indra A, Bergmann A et al (2016) Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. J Mater Chem A 4:10014–10022. doi: 10.1039/c6ta03644a CrossRefGoogle Scholar
  37. 37.
    Guo L, Ru Q, Song X, Hu S, Mo Y (2015) Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance. J Mater Chem A 3:8683–8692. doi: 10.1039/c5ta00830a CrossRefGoogle Scholar
  38. 38.
    Niu H, Yang X, Jiang H et al (2015) Hierarchical core–shell heterostructure of porous carbon nanofiber@ZnCo2O4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors. J Mater Chem A 3:24082–24094. doi: 10.1039/c5ta07439h CrossRefGoogle Scholar
  39. 39.
    Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965. doi: 10.1016/j.electacta.2011.03.129 CrossRefGoogle Scholar
  40. 40.
    Gao G, Wu HB, Dong B, Ding S, Lou XW (2015) Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci 2:1400014. doi: 10.1002/advs.201400014 CrossRefGoogle Scholar
  41. 41.
    Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. Acs Appl Mater Interfaces 6:731–736. doi: 10.1021/am405238a CrossRefGoogle Scholar
  42. 42.
    Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Anodes: unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material (Adv Funct Mater 20/2014). Adv Funct Mater 24:3012–3020. doi: 10.1002/adfm.201470131 CrossRefGoogle Scholar
  43. 43.
    Xie Q, Li F, Guo H et al (2013) Template-free synthesis of amorphous double-shelled zinc-cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. Acs Appl Mater Interfaces 5:5508–5517. doi: 10.1021/am400696x CrossRefGoogle Scholar
  44. 44.
    Deng J, Lv X, Gao J et al (2013) Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy Environ Sci 6:1965–1970. doi: 10.1039/C3EE00066D CrossRefGoogle Scholar
  45. 45.
    Lv X, Deng J, Wang J, Zhong J, Sun X (2015) Carbon-coated a-Fe2O3 nanostructures for efficient anode of Li-ion battery. J Mater Chem A 3:5183–5188. doi: 10.1039/C4TA06415A CrossRefGoogle Scholar
  46. 46.
    Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 Nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. Acs Appl Mater Interfaces 6:14827–14835. doi: 10.1021/am5036913 Google Scholar
  47. 47.
    Li J, Xiong S, Li X, Qian Y (2012) Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. J Mater Chem 22:23254–23259. doi: 10.1039/c2jm35607d CrossRefGoogle Scholar
  48. 48.
    Bissett MA, Worrall SD, Kinloch IA, Dryfe RAW (2016) Comparison of two-dimensional transition metal dichalcogenides for electrochemical supercapacitors. Electrochim Acta 201:30–37. doi: 10.1016/j.electacta.2016.03.190 CrossRefGoogle Scholar
  49. 49.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946. doi: 10.1002/anie.200702505 CrossRefGoogle Scholar
  50. 50.
    Tang H, Dou K, Kaun C-C, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2:360–364CrossRefGoogle Scholar
  51. 51.
    Zhu Y, Guo H, Wu Y, Cao C, Tao S, Wu Z (2014) Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J Mater Chem A 2:7904–7911. doi: 10.1039/C4TA00257A CrossRefGoogle Scholar
  52. 52.
    Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. Acs Nano 6:3214–3223. doi: 10.1021/nn300098m CrossRefGoogle Scholar
  53. 53.
    Reddy MV, Yu T, Sow CH et al (2007) α-FeOnanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799. doi: 10.1002/adfm.200601186 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations