Skip to main content

Advertisement

Log in

A facile synthetic method and electrochemical performances of nickel oxide/carbon fibers composites

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The uniform and completed nanofilms of nickel oxide (NiO) were electrodeposited on the carbon fibers (CFs) by a facile method of cyclic voltammetric. The as-prepared NiO/CFs composites can be used as a flexible electrode for electrochemical supercapacitors. Electrochemical measurements showed that 1.0-NiO/CFs had a good redox process and reversibility, and displayed the specific capacitances as high as 929 F g−1 at a current density of 1 A g−1. After 5000 cycles of charge and discharge, the 1.0-NiO/CFs composite materials could retain more than 88% of initial capacitance and show an excellent cyclability. Meanwhile, this supercapacitor exhibited a higher energy density of 20.8 Wh kg−1 at a power density of 200 W kg−1. The carbon fibers acting as active substrate for the composite electrode are a good conductor and have a larger capacitance of electrical double layer. The nanofilm structure of NiO could facilitate the contact of the electrolyte with the active materials, thus increasing the Faradaic pseudo-capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378

    Article  Google Scholar 

  2. Wang X-F, Lu X-H, Liu B, Chen D, Tong Y-X, Shen G-Z (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782

    Article  Google Scholar 

  3. Lu X-H, Yu M-H, Wang G-M, Tong Y-X, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181

    Article  Google Scholar 

  4. Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Plenum Press, New York

    Google Scholar 

  5. Yan J, Wang Q, Wei T, Fan Z-J (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1300859

    Article  Google Scholar 

  6. Dai L-M, Chang D-W, Back J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 23:1130–1166

    Article  Google Scholar 

  7. Zhou W, Zhou K, Liu X (2014) Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers. J Mater Chem A 2:7250–7255

    Article  Google Scholar 

  8. Le V-T, Kim H, Ghosh A, Kim J, Chang H, Vu Q-A et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947

    Article  Google Scholar 

  9. Wang G-P, Zhang L, Zhang J-J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  10. Xiang D, Yin L-W, Wang C-X, Zhang L-Y (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111

    Article  Google Scholar 

  11. Wu N-L, Kuo S-L, Lee M-H (2002) Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J Power Sources 104:62–65

    Article  Google Scholar 

  12. Lokhande C-D, Dubal D-P, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  13. Dong L-B, Xu C-J, Li Y, Huang Z-H, Kang F-Y, Yang Q-H et al (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685

    Article  Google Scholar 

  14. Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  Google Scholar 

  15. Al-Enizi A-M, Elzatahry A-A, Abdullah A-M, AlMaadeed M-A, Wang J-X, Zhao D-Y et al (2014) Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 71:276–283

    Article  Google Scholar 

  16. Xiao X, Li T, Yang P-H, Gao Y, Jin H-Y, Ni W-J et al (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6:9200–9206

    Article  Google Scholar 

  17. Li D-H, Yang D-J, Quan F-Y, Wang B-B, Zhang L-J, Zhu S-S et al (2015) Carbon fibers coated with metal oxides nanostructures as electrode materials for energy storage devices. Nano Rep 1:29–41

    Google Scholar 

  18. Zhao C-J, Ge Z-X, Zhou Y-A, Huang Y-F, Wang G-F, Qian X-Z (2017) Solar-assisting pyrolytically reclaimed carbon fiber and their hybrids of MnO2/RCF for supercapacitor electrodes. Carbon 114:230–241

    Article  Google Scholar 

  19. Lu X, Zhai T, Zhang X (2012) WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944

    Article  Google Scholar 

  20. Luan F, Wang G-M, Ling Y-C, Lu X-H, Wang H-Y, Tong Y-X et al (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990

    Article  Google Scholar 

  21. Wang D-W, Li F, Cheng H-M (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568

    Article  Google Scholar 

  22. Marcus P, Grimal J-L (1992) The anodic dissolution and passivation of Ni–Cr–Fe alloys studied by ESCA. Corros Sci 33:805–814

    Article  Google Scholar 

  23. Cheng S, Yang L, Liu Y, Lin W, Huang L, Chen D-C (2013) Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors. J Mater Chem A 1:7709–7716

    Article  Google Scholar 

  24. Wang G-M, Wang H-Y, Ling Y-H, Tang Y-H, Yang X-Y, Fitzmorris R-C (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  25. Bard A-J, Larry R-F (2001) Electrochemical methods—fundamentals and applications. John, New York

    Google Scholar 

  26. Huang M, Li F, Ji J-Y, Zhang Y-X, Zhao X-L, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884

    Article  Google Scholar 

  27. Dar F-I, Kevin M-R, Morphology E-S (2013) Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res Lett 8:363–370

    Article  Google Scholar 

  28. Cao F, Pan G-X, Xia X-H, Tan P-S, Chen H-F (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167

    Article  Google Scholar 

  29. Singh A-K, Sarkar D, Khan G-G, Mandal K (2013) Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. J Mater Chem A 1:12759–12767

    Article  Google Scholar 

  30. Ren X, Guo C, Xu L, Li T, Hou L, Wei Y (2015) Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 7:19930–19940

    Article  Google Scholar 

  31. Wu S-X, Hui K-S, Hui K-N, Kim K-H (2016) Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors. J Mater Chem A 4:9113–9123

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Doctor Foundation of Shandong Jianzhu University (XNBS 1434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, D., Liu, X. & Dong, X. A facile synthetic method and electrochemical performances of nickel oxide/carbon fibers composites. J Mater Sci 52, 7709–7718 (2017). https://doi.org/10.1007/s10853-017-1019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1019-4

Keywords

Navigation