Journal of Materials Science

, Volume 52, Issue 13, pp 7709–7718 | Cite as

A facile synthetic method and electrochemical performances of nickel oxide/carbon fibers composites

Energy materials


The uniform and completed nanofilms of nickel oxide (NiO) were electrodeposited on the carbon fibers (CFs) by a facile method of cyclic voltammetric. The as-prepared NiO/CFs composites can be used as a flexible electrode for electrochemical supercapacitors. Electrochemical measurements showed that 1.0-NiO/CFs had a good redox process and reversibility, and displayed the specific capacitances as high as 929 F g−1 at a current density of 1 A g−1. After 5000 cycles of charge and discharge, the 1.0-NiO/CFs composite materials could retain more than 88% of initial capacitance and show an excellent cyclability. Meanwhile, this supercapacitor exhibited a higher energy density of 20.8 Wh kg−1 at a power density of 200 W kg−1. The carbon fibers acting as active substrate for the composite electrode are a good conductor and have a larger capacitance of electrical double layer. The nanofilm structure of NiO could facilitate the contact of the electrolyte with the active materials, thus increasing the Faradaic pseudo-capacitance.


Cyclic Voltammetry Carbon Fiber Specific Capacitance Electrochemical Impedance Spectroscopy Electrochemical Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support from Doctor Foundation of Shandong Jianzhu University (XNBS 1434).


  1. 1.
    Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378CrossRefGoogle Scholar
  2. 2.
    Wang X-F, Lu X-H, Liu B, Chen D, Tong Y-X, Shen G-Z (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782CrossRefGoogle Scholar
  3. 3.
    Lu X-H, Yu M-H, Wang G-M, Tong Y-X, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7:2160–2181CrossRefGoogle Scholar
  4. 4.
    Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Plenum Press, New YorkGoogle Scholar
  5. 5.
    Yan J, Wang Q, Wei T, Fan Z-J (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1300859CrossRefGoogle Scholar
  6. 6.
    Dai L-M, Chang D-W, Back J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 23:1130–1166CrossRefGoogle Scholar
  7. 7.
    Zhou W, Zhou K, Liu X (2014) Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers. J Mater Chem A 2:7250–7255CrossRefGoogle Scholar
  8. 8.
    Le V-T, Kim H, Ghosh A, Kim J, Chang H, Vu Q-A et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7:5940–5947CrossRefGoogle Scholar
  9. 9.
    Wang G-P, Zhang L, Zhang J-J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  10. 10.
    Xiang D, Yin L-W, Wang C-X, Zhang L-Y (2016) High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material. Energy 106:103–111CrossRefGoogle Scholar
  11. 11.
    Wu N-L, Kuo S-L, Lee M-H (2002) Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J Power Sources 104:62–65CrossRefGoogle Scholar
  12. 12.
    Lokhande C-D, Dubal D-P, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270CrossRefGoogle Scholar
  13. 13.
    Dong L-B, Xu C-J, Li Y, Huang Z-H, Kang F-Y, Yang Q-H et al (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685CrossRefGoogle Scholar
  14. 14.
    Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727CrossRefGoogle Scholar
  15. 15.
    Al-Enizi A-M, Elzatahry A-A, Abdullah A-M, AlMaadeed M-A, Wang J-X, Zhao D-Y et al (2014) Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 71:276–283CrossRefGoogle Scholar
  16. 16.
    Xiao X, Li T, Yang P-H, Gao Y, Jin H-Y, Ni W-J et al (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6:9200–9206CrossRefGoogle Scholar
  17. 17.
    Li D-H, Yang D-J, Quan F-Y, Wang B-B, Zhang L-J, Zhu S-S et al (2015) Carbon fibers coated with metal oxides nanostructures as electrode materials for energy storage devices. Nano Rep 1:29–41Google Scholar
  18. 18.
    Zhao C-J, Ge Z-X, Zhou Y-A, Huang Y-F, Wang G-F, Qian X-Z (2017) Solar-assisting pyrolytically reclaimed carbon fiber and their hybrids of MnO2/RCF for supercapacitor electrodes. Carbon 114:230–241CrossRefGoogle Scholar
  19. 19.
    Lu X, Zhai T, Zhang X (2012) WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944CrossRefGoogle Scholar
  20. 20.
    Luan F, Wang G-M, Ling Y-C, Lu X-H, Wang H-Y, Tong Y-X et al (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5:7984–7990CrossRefGoogle Scholar
  21. 21.
    Wang D-W, Li F, Cheng H-M (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568CrossRefGoogle Scholar
  22. 22.
    Marcus P, Grimal J-L (1992) The anodic dissolution and passivation of Ni–Cr–Fe alloys studied by ESCA. Corros Sci 33:805–814CrossRefGoogle Scholar
  23. 23.
    Cheng S, Yang L, Liu Y, Lin W, Huang L, Chen D-C (2013) Carbon fiber paper supported hybrid nanonet/nanoflower nickel oxide electrodes for high-performance pseudo-capacitors. J Mater Chem A 1:7709–7716CrossRefGoogle Scholar
  24. 24.
    Wang G-M, Wang H-Y, Ling Y-H, Tang Y-H, Yang X-Y, Fitzmorris R-C (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033CrossRefGoogle Scholar
  25. 25.
    Bard A-J, Larry R-F (2001) Electrochemical methods—fundamentals and applications. John, New YorkGoogle Scholar
  26. 26.
    Huang M, Li F, Ji J-Y, Zhang Y-X, Zhao X-L, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884CrossRefGoogle Scholar
  27. 27.
    Dar F-I, Kevin M-R, Morphology E-S (2013) Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res Lett 8:363–370CrossRefGoogle Scholar
  28. 28.
    Cao F, Pan G-X, Xia X-H, Tan P-S, Chen H-F (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167CrossRefGoogle Scholar
  29. 29.
    Singh A-K, Sarkar D, Khan G-G, Mandal K (2013) Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. J Mater Chem A 1:12759–12767CrossRefGoogle Scholar
  30. 30.
    Ren X, Guo C, Xu L, Li T, Hou L, Wei Y (2015) Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 7:19930–19940CrossRefGoogle Scholar
  31. 31.
    Wu S-X, Hui K-S, Hui K-N, Kim K-H (2016) Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors. J Mater Chem A 4:9113–9123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Material Science and EngineeringShandong Jianzhu UniversityJinanPeople’s Republic of China

Personalised recommendations