Journal of Materials Science

, Volume 52, Issue 13, pp 7893–7906 | Cite as

Hydrothermal synthesis of tetragonal phase BaTiO3 on carbon fiber with enhanced electromechanical coupling

  • Christopher C. Bowland
  • Henry A. Sodano
Original Paper


Core–shell fibers utilizing carbon fiber as the load-bearing element and a functional shell are in the early stages of research and development, but are already showing promising results in multifunctional composite fabrication. This study builds on prior multifunctional fiber research that applied hydrothermal synthesis to grow BaTiO3 on carbon fibers. In this work, the hydrothermal reaction conditions are thoroughly explored and illustrate the typical trade-off between the tensile strength of the core fiber and the d 33 piezoelectric strain coefficient. This trade-off exemplifies the difficulty in synthesizing multifunctional fibers that maintain mechanical integrity while offering enhanced electromechanical functionality. By studying the hydrothermal synthesis conditions, parameters are established that result in the first demonstration of tetragonal phase BaTiO3 on carbon fiber. Synthesis parameters are developed that maintain the tensile strength of the core carbon fiber while increasing the d 33 piezoelectric strain coefficient of the BaTiO3 film. The optimal fiber has a tensile strength of 4.96 GPa and a d 33 of 39.2 pm/V, which equate to 16.2 and 49.6% increases over the prior synthesis of BaTiO3 coated carbon fibers, respectively. Therefore, this work establishes hydrothermal reaction conditions that create higher-performance multifunctional fibers through the development of tetragonal phase BaTiO3 on carbon fiber.


Carbon Fiber BaTiO3 TiO2 Film Barium Strontium Titanate Peak Split 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support for this research from National Science Foundation (Award# CMMI-1333818 and CBET-1510855) and Air Force Office of Scientific Research (Award# FA9550-12-1-0132).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tsurumi T, Suzuki T, Yamane M, Daimon M (1994) Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn J Appl Phys 33:5192–5195CrossRefGoogle Scholar
  2. 2.
    Vehkamäki M, Hatanpää T, Hänninen T, Ritala M, Leskelä M (1999) Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition. Electrochem Solid State Lett 2:504–506CrossRefGoogle Scholar
  3. 3.
    Nawathey R, Vispute R, Chaudhari S, Kanetkar S, Ogale SB (1989) Pulsed laser deposition of barium titanate films on silicon. Solid State Commun 71:9–12CrossRefGoogle Scholar
  4. 4.
    Nashimoto K, Fork DK, Geballe TH (1992) Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition. Appl Phys Lett 60:1199–1201CrossRefGoogle Scholar
  5. 5.
    Qu B, Evstigneev M, Johnson D, Prince R (1998) Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition. Appl Phys Lett 72:1394–1396CrossRefGoogle Scholar
  6. 6.
    Lee HS, Koo SM, Yoo JW (2010) Ultrathin barium titanate films by polyol thermal decomposition process. J Mater Sci 45:6275–6279. doi: 10.1007/s10853-010-4850-4 CrossRefGoogle Scholar
  7. 7.
    Kwak B, Zhang K, Boyd E, Erbil A, Wilkens B (1991) Metalorganic chemical vapor deposition of BaTiO3 thin films. J Appl Phys 69:767–772CrossRefGoogle Scholar
  8. 8.
    Wills L, Wessels BW, Richeson D, Marks TJ (1992) Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition. Appl Phys Lett 60:41–43CrossRefGoogle Scholar
  9. 9.
    Kim I, Lee C, Park SJ (1994) Preparation of BaTiO3 thin films by metalorganic chemical vapor deposition using ultrasonic spraying. Jpn J Appl Phys 33:5125–5128CrossRefGoogle Scholar
  10. 10.
    Zhou Z, Bowland CC, Malakooti MH, Tang H, Sodano HA (2016) Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting. Nanoscale 8:5098–5105CrossRefGoogle Scholar
  11. 11.
    Tang H, Zhou Z, Bowland CC, Sodano HA (2015) Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy 17:302–307CrossRefGoogle Scholar
  12. 12.
    Gu H, Hu Y, You J, Hu Z, Yuan Y, Zhang T (2007) Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J Appl Phys 101:024319CrossRefGoogle Scholar
  13. 13.
    Moon J, Li T, Randall CA, Adair JH (1997) Low temperature synthesis of lead titanate by a hydrothermal method. J Mater Res 12:189–197CrossRefGoogle Scholar
  14. 14.
    Tang H, Zhou Z, Bowland CC, Sodano HA (2015) Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions. Nanotechnology 26:345602CrossRefGoogle Scholar
  15. 15.
    Lin Y, Liu Y, Sodano HA (2009) Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl Phys Lett 95:122901CrossRefGoogle Scholar
  16. 16.
    Zhou Z, Tang H, Sodano HA (2014) Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv Mater 26:7547–7554CrossRefGoogle Scholar
  17. 17.
    Cheng H, Ma J, Zhu B, Cui Y (1993) Reaction mechanisms in the formation of lead zirconate titanate solid solutions under hydrothermal conditions. J Am Ceram Soc 76:625–629CrossRefGoogle Scholar
  18. 18.
    Xu G, Ren Z, Du P, Weng W, Shen G, Han G (2005) Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires. Adv Mater 17:907–910CrossRefGoogle Scholar
  19. 19.
    Xu S, Poirier G, Yao N (2012) PMN-PT nanowires with a very high piezoelectric constant. Nano Lett 12:2238–2242CrossRefGoogle Scholar
  20. 20.
    Hertl W (1988) Kinetics of barium titanate synthesis. J Am Ceram Soc 71:879–883. doi: 10.1111/j.1151-2916.1988.tb07540.x CrossRefGoogle Scholar
  21. 21.
    Bacsa R, Ravindranathan P, Dougherty J (1992) Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. J Mater Res 7:423–428. doi: 10.1557/JMR.1992.0423 CrossRefGoogle Scholar
  22. 22.
    Yoshimura M, Yoo S, Hayashi M, Ishizawa N (1989) Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn J Appl Phys 28:L2007–L2009. doi: 10.1143/JJAP.28.L2007 CrossRefGoogle Scholar
  23. 23.
    Ciftci E, Rahaman M, Shumsky M (2001) Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles. J Mater Sci 36:4875–4882. doi: 10.1023/A:1011828018247 CrossRefGoogle Scholar
  24. 24.
    Zeng J, Lin C, Li J, Li K (1999) Low temperature preparation of barium titanate thin films by a novel sol–gel–hydrothermal method. Mater Lett 38:112–115CrossRefGoogle Scholar
  25. 25.
    Eckert JO, Hung-Houston CC, Gersten BL, Lencka MM, Riman RE (1996) Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J Am Ceram Soc 79:2929–2939CrossRefGoogle Scholar
  26. 26.
    Dutta PK, Gregg J (1992) Hydrothermal synthesis of tetragonal barium titanate (BaTiO3). Chem Mater 4:843–846CrossRefGoogle Scholar
  27. 27.
    Kumazawa H, Annen S, Sada E (1995) Hydrothermal synthesis of barium titanate fine particles from amorphous and crystalline titania. J Mater Sci 30:4740–4744. doi: 10.1007/BF01153087 CrossRefGoogle Scholar
  28. 28.
    Koka A, Sodano HA (2013) High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays. Nat Commun. doi: 10.1038/ncomms3682 Google Scholar
  29. 29.
    Koka A, Zhou Z, Sodano H (2013) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296CrossRefGoogle Scholar
  30. 30.
    Koka A, Sodano HA (2014) A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv Energy Mater 4:1301660CrossRefGoogle Scholar
  31. 31.
    Koka A, Zhou Z, Tang H, Sodano HA (2014) Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25:375603CrossRefGoogle Scholar
  32. 32.
    Bowland CC, Malakooti MH, Zhou Z, Sodano HA (2015) Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis. Appl Phys Lett 106:222903CrossRefGoogle Scholar
  33. 33.
    Lin Y, Ehlert G, Sodano HA (2009) Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19:2654–2660CrossRefGoogle Scholar
  34. 34.
    Ehlert GJ, Sodano HA (2009) Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites. ACS Appl Mater Interfaces 1:1827–1833. doi: 10.1021/am900376t CrossRefGoogle Scholar
  35. 35.
    Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers. Compos Sci Technol 71:946–954CrossRefGoogle Scholar
  36. 36.
    Ehlert GJ, Galan U, Sodano HA (2013) Role of surface chemistry in adhesion between ZnO nanowires and carbon fibers in hybrid composites. ACS Appl Mater Interfaces 5:635–645CrossRefGoogle Scholar
  37. 37.
    Hwang H, Malakooti MH, Patterson BA, Sodano HA (2015) Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Compos Sci Technol 107:75–81. doi: 10.1016/j.compscitech.2014.12.001 CrossRefGoogle Scholar
  38. 38.
    Malakooti MH, Hwang H, Sodano HA (2015) Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping. ACS Appl Mater Interfaces 7:332–339. doi: 10.1021/am506272c CrossRefGoogle Scholar
  39. 39.
    Bowland C, Zhou Z, Sodano HA (2014) Multifunctional barium titanate coated carbon fibers. Adv Funct Mater 24:6303–6308. doi: 10.1002/adfm.201401417 CrossRefGoogle Scholar
  40. 40.
    Lin Y, Zhou Z, Sodano HA (2013) Barium titanate and barium strontium titanate coated carbon fibers for multifunctional structural capacitors. J Compos Mater 47:1527–1533CrossRefGoogle Scholar
  41. 41.
    Joshi UA, Yoon S, Baik S, Lee JS (2006) Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J Phys Chem B 110:12249–12256CrossRefGoogle Scholar
  42. 42.
    Lee H, Moon S, Choi C, Kim DK (2012) Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J Am Ceram Soc 95:2429–2434CrossRefGoogle Scholar
  43. 43.
    Kajiyoshi K, Ishizawa N, Yoshimura M (1991) Preparation of tetragonal barium titanate thin film on titanium metal substrate by hydrothermal method. J Am Ceram Soc 74:369–374CrossRefGoogle Scholar
  44. 44.
    Wu M, Long J, Wang G, Huang A, Luo Y, Feng S, Xu R (1999) Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions. J Am Ceram Soc 82:3254–3256CrossRefGoogle Scholar
  45. 45.
    Gardner SD, Singamsetty CS, Wu Z, Pittman CU Jr (1996) XPS/ISS investigation of carbon fibers sequentially exposed to nitric acid and sodium hydroxide. Surf Interface Anal 24:311–320CrossRefGoogle Scholar
  46. 46.
    Zhou Z, Tang H, Sodano HA (2013) Vertically aligned arrays of BaTiO3 nanowires. ACS Appl Mater Interfaces 5:11894–11899CrossRefGoogle Scholar
  47. 47.
    Zhou Z, Bowland CC, Patterson BA, Malakooti MH, Sodano HA (2016) Conformal BaTiO3 films with high piezoelectric coupling through an optimized hydrothermal synthesis. ACS Appl Mater Interfaces 8:21446–21453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Materials Science and Engineering DepartmentUniversity of MichiganAnn ArborUSA
  3. 3.Aerospace Engineering DepartmentUniversity of MichiganAnn ArborUSA
  4. 4.Macromolecular Science and Engineering DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations