Journal of Materials Science

, Volume 52, Issue 12, pp 7311–7322 | Cite as

Mössbauer and TEM studies of the phase composition and structure of (Nd1−x Ce x )32.7Fe66.22B1.08 ribbons

Original Paper


(Ce x Nd1−x )32.7Fe66.22B1.08 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) ribbons were prepared by melt spinning, and the effect of substitution of Ce for Nd on their microstructure and magnetic properties was investigated. Especially, the phase compositions and microstructures of the ribbons were examined by Mössbauer spectrometry and transmission electron microscopy, respectively. The results indicated that the coercivity (H ci) and remanence (B r) of the ribbons decreased with the increase of Ce content. However, an abnormal increase of H ci was observed in the sample of x = 0.4. This was mainly due to the synergistic effects of the microstructures, the ratio of secondary phases, and the site-preference of rare earth atoms. In this study, the optimal magnetic properties of B r = 6.95 kGs, H ci = 13.65 kOe and (BH)max = 9.56 MGOe were achieved in the (Nd0.6Ce0.4)32.7Fe66.22B1.08 ribbon, which indicated that Ce had a great potential to prepare the low cost and high coercivity magnets.


Grain Boundary High Coercivity Rare Earth Atom Free Side Wheel Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by the Sichuan Province Science and Technology Support Programs (2014GZ0090 and 2016GZ0262).


  1. 1.
    Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 44:064001CrossRefGoogle Scholar
  2. 2.
    Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP (2011) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23:821–842CrossRefGoogle Scholar
  3. 3.
    McCallum RW, Lewis LH, Skomski R, Kramer MJ, Anderson IE (2014) Practical aspects of modern and future permanent magnets. Annu Rev Mater Res 44:451–477CrossRefGoogle Scholar
  4. 4.
    Li D, Bogatin Y (1991) Effect of composition on the magnetic properties of (Ce1−xNdx)13.5(Fe1−y−zCoySiz)80B6.5 sintered magnets. J Appl Phys 69:5515–5517CrossRefGoogle Scholar
  5. 5.
    Yan C, Guo S, Chen R, Lee D, Yan AR (2014) Effect of Ce on the magnetic properties and microstructure of sintered didymium-Fe-B magnets. IEEE Trans Magn 50:1–5Google Scholar
  6. 6.
    Huang S, Feng H, Zhu MG, Li AH, Zhang Y, Li W (2014) Investigation of chemical composition and crystal structure in sintered Ce15Nd15FebalB1 magnet. AIP Adv 4:107127CrossRefGoogle Scholar
  7. 7.
    Chu LH, Liu Y, Li J, Ma YL, Li CY (2012) Structural and magnetic study of hot-pressed and hot-deformed Nd13.5−xCexFe80.4Ga0.5B5.6 (x = 0,0.5,1) prepared by spark plasma sintering. IEEE Trans Magn 48:2092–2095CrossRefGoogle Scholar
  8. 8.
    Pathak AK et al (2015) Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater 27:2663–2667CrossRefGoogle Scholar
  9. 9.
    Soeda H, Yanagida M, Yamasaki J, Mohri K (1985) Hard magnetic properties of rapidly quenched (La, Ce)-Fe–B ribbons. IEEE Trans J. Magn Jpn 1:1006–1008CrossRefGoogle Scholar
  10. 10.
    Chuang YC, Wu CH, Shao ZB (1987) Investigation of the Ce–Fe binary system. J. Less Common Met 136:147–153CrossRefGoogle Scholar
  11. 11.
    Fuerst CD, Capehart TW, Pinkerton FE, Herbst JF (1995) Preparation and characterization of La2-xCexFe14B compounds. J Magn Magn Mater 139:359–363Google Scholar
  12. 12.
    Herbst JF, Meyer MS, Pinkerton FE (2012) Magnetic hardening of Ce2Fe14B. J Appl Phys 111:07A718 1–3 CrossRefGoogle Scholar
  13. 13.
    Skoug EJ, Meyer MS, Pinkerton FE, Tessema MM, Haddad D, Herbst JF (2013) Crystal structure and magnetic properties of Ce2Fe14−xCoxB alloys. J Alloys Compd 574:552–555CrossRefGoogle Scholar
  14. 14.
    Zhou QY, Liu Z, Guo S, Yan AR, Lee D (2015) Magnetic properties and microstructure of melt-spun Ce–Fe–B magnets. IEEE Trans Magn 51:1–4Google Scholar
  15. 15.
    Hussain M, Zhao LZ, Zhang C, Jiao DL, Zhong XC, Liu ZW (2016) Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys. Phys B 483:69–74CrossRefGoogle Scholar
  16. 16.
    Capehart TW, Mishra RK, Meisner GP, Fuerst CD, Herbst JF (1993) Steric variation of the cerium valence in Ce2Fe14B and related compounds. Appl Phys Lett 63:3642–3644CrossRefGoogle Scholar
  17. 17.
    Alam A, Khan M, McCallum RW, Johnson DD (2013) Site-preference and valency for rare-earth sites in (R–Ce) 2Fe14B magnets. Appl Phys Lett 102:042402-1–042402-4CrossRefGoogle Scholar
  18. 18.
    Alam A, Johnson DD (2014) Mixed valency and site-preference chemistry for cerium and its compounds: a predictive density-functional theory study. Phys Rev B 89:235126–1–235126-4CrossRefGoogle Scholar
  19. 19.
    Wang J, Liang L, Zhang LT et al (2016) Mixed-valence state of Ce and its individual atomic moments in Ce2Fe14B studied by soft X-ray magnetic circular dichroism. Intermetallics 69:42–46CrossRefGoogle Scholar
  20. 20.
    Pathak AK, Gschneidner KA, Khan M et al (2016) High performance Nd–Fe–B permanent magnets without critical elements. J Alloys Compd 668:80–86CrossRefGoogle Scholar
  21. 21.
    Pei K, Zhang X, Lin M et al (2016) Effects of Ce-substitution on magnetic properties and microstructure of Nd–Pr–Fe–B melt-spun powders. J Magn Magn Mater 398:96–100CrossRefGoogle Scholar
  22. 22.
    Herbst JF (1991) R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 63:819CrossRefGoogle Scholar
  23. 23.
    Chen ZH, Shen BG, Zhang JX et al (1997) Mössbauer spectroscopy and X-Ray diffraction studies of the phase composition of crystallized NdxFe81.5−xB18.5 alloys with 7⩽x⩽15. Chin Phys Lett 14:387CrossRefGoogle Scholar
  24. 24.
    Buschow KHJ, Van Wieringen JS (1970) Crystal structure and magnetic properties of cerium-iron compounds Phys. Status Solid B 42:231–239CrossRefGoogle Scholar
  25. 25.
    Atzmony U, Dariel MP (1974) Magnetic anisotropy and hyperfine interactions in CeFe2, GdFe2, and LuFe2. Phys Rev B 10:2060CrossRefGoogle Scholar
  26. 26.
    Hautot D, Long GJ, Grandjean F, Isnard O (2000) Mössbauer spectral study of the magnetic properties of Ce2Fe17Hx (x = 0, 1, 2, 3, 4, and 5). Phys Rev B 62:11731CrossRefGoogle Scholar
  27. 27.
    Farrell J, Wallace WE (1964) Magnetic Characteristics of CeFe2. J Chem Phys 41:1524–1525CrossRefGoogle Scholar
  28. 28.
    Van Noort HM, De Mooij DB, Buschow KHJ (1985) 57Fe Mössbauer spectroscopy study of the magnetic properties of R2Fe14B compounds (R = Ce, Nd, Gd, Y). J Appl Phys 57:5414–5419CrossRefGoogle Scholar
  29. 29.
    Gubbens PCM, Vanloef JJ, Buschow KHJ (1974) Magnetic and electric properties of R2Fe17 compounds studied by means of the Mössbauer effect. J Phys 35:C6-617–C6-620Google Scholar
  30. 30.
    Givord D, Lemaire R (1974) Magnetic transition and anomalous thermal expansion in R2Fe17 compounds. IEEE Trans Magn 10:109–113CrossRefGoogle Scholar
  31. 31.
    Roulin G, Teillet J, Fnidiki A, Labulle B, Ochin P (1994) X-ray and Mössbauer study of rapidly solidified Ce20Fe80 ribbons; effect of the quenching rate. Hyperfine Interact 88:65–71CrossRefGoogle Scholar
  32. 32.
    Kostikas A, Papaefthymiou V, Simopoulos A, Hadjipanayis GC (1985) Phase analysis of Fe–Nd–B alloys by Mossbauer spectroscopy. J Phys F Metal Phys 15:L129CrossRefGoogle Scholar
  33. 33.
    Pei K, Lin M, Yan A et al (2016) Effects of annealing process on magnetic properties and structures of Nd–Pr–Ce–Fe–B melt-spun powders. J Magn Magn Mater 406:239–243CrossRefGoogle Scholar
  34. 34.
    Yan CJ, Guo S, Chen RJ et al (2014) Phase constitution and microstructure of Ce–Fe–B strip-casting alloy. Chin Phys B 23:107501CrossRefGoogle Scholar
  35. 35.
    Schrefl T, Fidler J, Kronmüller H (1994) Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49:6100CrossRefGoogle Scholar
  36. 36.
    Hernando A, Navarro I, González JM (1992) On the role of intergranular exchange coupling in the magnetization process of permanent-magnet materials. Europhys Lett 20:175CrossRefGoogle Scholar
  37. 37.
    Schrefl T, Schmidts HF, Fidler J, Kronmüller H (1993) The role of exchange and dipolar coupling at grain boundaries in hard magnetic materials. J Magn Magn Mater 124:251–261CrossRefGoogle Scholar
  38. 38.
    Kronmüller H (1987) Theory of nucleation fields in inhomogeneous ferromagnets. Phys Status Solid B 144:385–396CrossRefGoogle Scholar
  39. 39.
    Hono K, Sepehri-Amin H (2012) Strategy for high-coercivity Nd–Fe–B magnets. Scri Mater 67:530–535CrossRefGoogle Scholar
  40. 40.
    Susner M A, Conner B S, Saparov B I, et al. (2015) Growth and Characterization of Ce-Substituted Nd2Fe14B Single Crystals. arXiv preprint, arXiv:1508.07792, 2015
  41. 41.
    Hussain M, Zhao LZ, Zhang C et al (2016) Composition-dependent magnetic properties of melt-spun La or/and Ce substituted nanocomposite NdFeB alloys. Phys B Cond Mater 483:69–74CrossRefGoogle Scholar
  42. 42.
    Sun AZ, Wu S, Xu WH, Wang J et al (2012) Nd2Fe17 nanograins effect on the coercivity of HDDR NdFeB magnets with low boron content. Int J Min Met Mater 19:236–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • R. Q. Wang
    • 1
  • Y. Liu
    • 1
  • J. Li
    • 1
  • W. Zhao
    • 1
  • X. J. Yang
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations