Journal of Materials Science

, Volume 52, Issue 12, pp 7224–7231 | Cite as

Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film

  • Wen Biao Fu
  • He Ma
  • Yang Wei
  • Kaili Jiang
  • Guang Tao Fei
  • Li De Zhang
Original Paper


A new composite thin film of vanadium dioxide (VO2) nanowire/carbon nanotube (CNT) has been prepared by a hydrothermal method. The VO2 nanowires were covered on the whole upper surfaces of CNT and combined very well with the CNT film. XRD and Raman spectra revealed that the as-synthesized composite film had good crystallization. The film presented favorable photoelectric response at the room temperature due to the excellent thermal conductivity of CNT film and their large effective illumination area. The obtained results revealed that photocurrent showed a strong dependence on the bias voltage and incident infrared light intensity. Furthermore, the infrared photoelectric response exhibited an obvious enhancement with decreasing the thickness of the VO2 films. The responsivity (R λ ) can reach up to 17.83 mA/W for the film thickness of 25 μm, and the rise and decay time are about 0.84 and 0.56 s, respectively.


Composite Film MoS2 Composite Thin Film Vanadium Dioxide Excellent Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Basic Research Program of China (973 Program) (NO. 2012CB932303), the National Natural Science Foundation of China (NOs. 51472142, 51471162), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Foundation of Director of Institute of Solid State Physics, Chinese Academy of Sciences (Grant No. 2016DFY06).


  1. 1.
    Svensson J, Anttu N, Vainorius N, Borg BM, Wernersson LE (2013) Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett 13:1380–1385CrossRefGoogle Scholar
  2. 2.
    Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43:187–210CrossRefGoogle Scholar
  3. 3.
    Waynant RW, Ilev IK, Gannot I (2001) Mid-infrared laser applications in medicine and biology. Philos Trans R Soc A 359:635–644CrossRefGoogle Scholar
  4. 4.
    Zhao HX, Chen XS, Lu JP, Shu HB, Lu W (2014) The structural and electronic properties of amorphous HgCdTe from first-principles calculations. J Phys D Appl Phys 47:025304CrossRefGoogle Scholar
  5. 5.
    Putley EH (1982) History of infrared detection-part I. the 1st detectors of thermal-radiation. Infrared Phys 22:125–131CrossRefGoogle Scholar
  6. 6.
    Kurra N, Bhadram VS, Narayana C, Kulkarni GU (2013) Few layer graphene to graphitic films: infrared photoconductive versus bolometric response. Nanoscale 5:381–389CrossRefGoogle Scholar
  7. 7.
    Downs C, Vandervelde TE (2013) Progress in infrared photodetectors since 2000. Sensors 13:5054–5098CrossRefGoogle Scholar
  8. 8.
    Pescaglini A, Iacopino D (2015) Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J Mater Chem C 3:11785–11800CrossRefGoogle Scholar
  9. 9.
    Kuman RTR, Karunagaran B, Mangalaraj D, Narayandass SK, Manoravi P, Joseph M, Gopal V (2003) Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors. Sens Actuators A Phys 107:62–67CrossRefGoogle Scholar
  10. 10.
    Danilov OB, Klimov VA, Mikheeva OP, Sidorov AI, Tul’skii SA, Shadrin EB, Yachnev IL (2003) Optical limitation of Mid-IR radiation in vanadium dioxide films. Tech Phys Lett 48:73–79Google Scholar
  11. 11.
    Varghese B, Tamang R, Tok ES, Mhaisalkar SG, Sow CH (2010) Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J Phys Chem C 114:15149–15156CrossRefGoogle Scholar
  12. 12.
    Wang X, Gao HW (2015) Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires. Nano Lett 15:7037–7042CrossRefGoogle Scholar
  13. 13.
    Lu JP, Liu HW, Deng SZ, Zheng MR, Wang YH, Kan van JA, Tang SH, Zhang XH, Sow CH, Mhaisalkar SG (2014) Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. Nanoscale 6:7619–7627CrossRefGoogle Scholar
  14. 14.
    Xiao Y, Zhai ZH, Shi QW, Zhu LG, Li J, Huang WX, Yue F, Hu YY, Peng QX, Li ZR (2015) Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy. Appl Phys Lett 107:031906CrossRefGoogle Scholar
  15. 15.
    Wu YF, Fan LL, Huang WF, Chen SM, Chen S, Chen FH, Zou CW, Wu ZY (2014) Depressed transition temperature of WxV1-xO2: mechanistic insights from the X-Ray absorption fine structure (XAFS) spectroscopy. Phys Chem Chem Phys 16:17705–17714CrossRefGoogle Scholar
  16. 16.
    Pergament A, Stefanovich G, Berezina O, Kirienko D (2013) Electrical conductivity of tungsten doped vanadium dioxide obtained by the Sol-Gel technique. Thin Solid Films 531:572–576CrossRefGoogle Scholar
  17. 17.
    Wu CZ, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42:5157–5183CrossRefGoogle Scholar
  18. 18.
    Li ZJ, Hu ZP, Peng J, Wu CZ, Yang YC, Feng F, Gao P, Yang JL, Xie Y (2014) Ultrahigh infrared photoresponse from core-shell single domain VO2/V2O5 heterostructure in nanobeam. Adv Funct Mater 24:1821–1830CrossRefGoogle Scholar
  19. 19.
    Wu JM, Chang WE (2014) Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl Mater Interfaces 6:14286–14292CrossRefGoogle Scholar
  20. 20.
    Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRefGoogle Scholar
  21. 21.
    Jiang KL, Wang JP, Li QQ, Liu LA, Liu CH, Fan SS (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23:1154–1161CrossRefGoogle Scholar
  22. 22.
    Xiao L, Ma H, Liu JK, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan SS, Jiang KL (2015) Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films. Nano Lett 15:8365–8370CrossRefGoogle Scholar
  23. 23.
    Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, Zhao YG, Fan SS (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8:700–705CrossRefGoogle Scholar
  24. 24.
    Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183CrossRefGoogle Scholar
  25. 25.
    Wu JM, Liou LB (2011) Room temperature photo-induced phase transitions of VO2 nanodevices. J Mater Chem 21:5499–5504CrossRefGoogle Scholar
  26. 26.
    Zhai TY, Liu HM, Li HQ, Fang XS, Liao MY, Li L, Zhou HS, Koide Y, Bando Y, Goberg D (2010) Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22:2547–2552CrossRefGoogle Scholar
  27. 27.
    Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843CrossRefGoogle Scholar
  28. 28.
    Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR (2011) Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23:5419–5424CrossRefGoogle Scholar
  29. 29.
    Yin ZY, Li H, Li H, Jiang L, Shi YM, Sun YH, Lu G, Zhang Q, Chen XD, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRefGoogle Scholar
  30. 30.
    Choi W, Cho MY, Konar A, Lee JH, Cha GB, Hong SC, Kim S, Kim J, Jena D, Joo J, Kim S (2012) High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24:5832–5836CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wen Biao Fu
    • 1
    • 2
  • He Ma
    • 3
  • Yang Wei
    • 3
  • Kaili Jiang
    • 3
  • Guang Tao Fei
    • 1
  • Li De Zhang
    • 1
  1. 1.Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations