Journal of Materials Science

, Volume 52, Issue 12, pp 7028–7038 | Cite as

MoS2/h-BN heterostructures: controlling MoS2 crystal morphology by chemical vapor deposition

  • Aspasia Antonelou
  • T. Hoffman
  • J. H. Edgar
  • Spyros N. Yannopoulos
Original Paper


Tuning the properties of van der Waals heterostructures based on alternating layers of two-dimensional materials is an emerging field of research with implications for electronics and photonics. Hexagonal boron nitride (h-BN) is an attractive insulating substrate for two-dimensional materials as it may exert less influence on the layer’s properties than silica. In this work, MoS2 layers were deposited by chemical vapor deposition (CVD) on thick h-BN flakes mechanically exfoliated deposited on Si/SiO2 substrates. CVD affords the controllable, large-scale preparation of MoS2 on h-BN alleviating shortcomings of manual mechanical assembly of such heterostructures. Electron microscopy revealed that in-plane and vertical to the substrate MoS2 layers were grown at high yield, depending on the sample preparation conditions. Raman and photoluminescence spectroscopy were employed to assess the optical and electronic quality of MoS2 grown on h-BN as well as the interactions between MoS2 and the supporting substrate. Compared to silica, MoS2 layers grown on h-BN are less prone to oxidation and are subjected to considerably weaker electronic perturbation.


MoS2 Raman Band Trion MoS2 Structure MoS2 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A. A. and S. N. Y. would like to thank Dr. G. A. Voyiatzis for providing experimental facilities for the Raman spectra. Dr. V. Dracopoulos is thanked for helping with electron microcopy images. The growth of h-BN crystals was supported by the National Science Foundation, CMMI award #1538127.


  1. 1.
    Novoselov KS, Fal′ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200. doi: 10.1038/nature11458 CrossRefGoogle Scholar
  2. 2.
    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798. doi: 10.1021/cr300263a CrossRefGoogle Scholar
  3. 3.
    Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926. doi: 10.1021/nn400280c CrossRefGoogle Scholar
  4. 4.
    Levendorf MP, Kim C-J, Brown L et al (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627–632. doi: 10.1038/nature11408 CrossRefGoogle Scholar
  5. 5.
    Gong Y, Shi G, Zhang Z et al (2014) Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat Commun. doi: 10.1038/ncomms4193 Google Scholar
  6. 6.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425. doi: 10.1038/nature12385 CrossRefGoogle Scholar
  7. 7.
    Zallen R, Slade M (1974) Rigid-layer modes in chalcogenide crystals. Phys Rev B 9:1627–1637. doi: 10.1103/PhysRevB.9.1627 CrossRefGoogle Scholar
  8. 8.
    Ponomarenko LA, Geim AK, Zhukov AA et al (2011) Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys 7:958–961. doi: 10.1038/nphys2114 CrossRefGoogle Scholar
  9. 9.
    Britnell L, Gorbachev RV, Jalil R et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950. doi: 10.1126/science.1218461 CrossRefGoogle Scholar
  10. 10.
    Haigh SJ, Gholinia A, Jalil R et al (2012) Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat Mater 11:764–767. doi: 10.1038/nmat3386 CrossRefGoogle Scholar
  11. 11.
    Georgiou T, Jalil R, Belle BD et al (2012) Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103. doi: 10.1038/nnano.2012.224 CrossRefGoogle Scholar
  12. 12.
    Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252. doi: 10.1021/nn3059136 CrossRefGoogle Scholar
  13. 13.
    Hunt B, Sanchez-Yamagishi JD, Young AF et al (2013) Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340:1427–1430. doi: 10.1126/science.1237240 CrossRefGoogle Scholar
  14. 14.
    Yu L, Lee Y-H, Ling X et al (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14:3055–3063. doi: 10.1021/nl404795z CrossRefGoogle Scholar
  15. 15.
    Zhang W, Chuu C-P, Huang J-K et al (2014) Ultrahigh-gain photodetectors based on atomically thin graphene–MoS2 heterostructures. Sci Rep. doi: 10.1038/srep03826 Google Scholar
  16. 16.
    Frindt RF (1966) Single crystals of MoS2 several molecular layers thick. J Appl Phys 37:1928. doi: 10.1063/1.1708627 CrossRefGoogle Scholar
  17. 17.
    Yang D, Sandoval SJ, Divigalpitiya WMR et al (1991) Structure of single-molecular-layer MoS2. Phys Rev B 43:12053–12056. doi: 10.1103/PhysRevB.43.12053 CrossRefGoogle Scholar
  18. 18.
    Schumacher A, Scandella L, Kruse N, Prins R (1993) Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf Sci Lett 289:L595–L598. doi: 10.1016/0167-2584(93)90727-Z Google Scholar
  19. 19.
    Eda G, Yamaguchi H, Voiry D et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116. doi: 10.1021/nl201874w CrossRefGoogle Scholar
  20. 20.
    Lee Y-H, Zhang X-Q, Zhang W et al (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325. doi: 10.1002/adma.201104798 CrossRefGoogle Scholar
  21. 21.
    Liu K-K, Zhang W, Lee Y-H et al (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12:1538–1544. doi: 10.1021/nl2043612 CrossRefGoogle Scholar
  22. 22.
    Jäger-Waldau A, Lux-Steiner MC, Bucher E et al (1993) MoS2 thin films prepared by sulphurization. Appl Surf Sci 65–66:465–472. doi: 10.1016/0169-4332(93)90703-E CrossRefGoogle Scholar
  23. 23.
    Zhan Y, Liu Z, Najmaei S et al (2012) large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971. doi: 10.1002/smll.201102654 CrossRefGoogle Scholar
  24. 24.
    Antonelou A, Syrrokostas G, Sygellou L et al (2016) Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology 27:45404. doi: 10.1088/0957-4484/27/4/045404 CrossRefGoogle Scholar
  25. 25.
    Bao W, Cai X, Kim D et al (2013) High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett 102:42104. doi: 10.1063/1.4789365 CrossRefGoogle Scholar
  26. 26.
    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. doi: 10.1038/nnano.2010.279 CrossRefGoogle Scholar
  27. 27.
    Chan MY, Komatsu K, Li S-L et al (2013) Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5:9572. doi: 10.1039/c3nr03220e CrossRefGoogle Scholar
  28. 28.
    Lee G-H, Yu Y-J, Cui X et al (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7:7931–7936. doi: 10.1021/nn402954e CrossRefGoogle Scholar
  29. 29.
    Cui X, Lee G-H, Kim YD et al (2015) Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol 10:534–540. doi: 10.1038/nnano.2015.70 CrossRefGoogle Scholar
  30. 30.
    Li L, Lee I, Lim D et al (2015) Raman shift and electrical properties of MoS2 bilayer on boron nitride substrate. Nanotechnology 26:295702. doi: 10.1088/0957-4484/26/29/295702 CrossRefGoogle Scholar
  31. 31.
    Lee G-H, Cui X, Kim YD et al (2015) highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9:7019–7026. doi: 10.1021/acsnano.5b01341 CrossRefGoogle Scholar
  32. 32.
    Ling X, Lee Y-H, Lin Y et al (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14:464–472. doi: 10.1021/nl4033704 CrossRefGoogle Scholar
  33. 33.
    Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9:5246–5254. doi: 10.1021/acsnano.5b00655 CrossRefGoogle Scholar
  34. 34.
    Yan A, Velasco J, Kahn S et al (2015) Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett 15:6324–6331. doi: 10.1021/acs.nanolett.5b01311 CrossRefGoogle Scholar
  35. 35.
    Behura S, Nguyen P, Che S et al (2015) Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J Am Chem Soc 137:13060–13065. doi: 10.1021/jacs.5b07739 CrossRefGoogle Scholar
  36. 36.
    Nozaki J, Kobayashi Y, Miyata Y et al (2016) Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy. Jpn J Appl Phys 55:06GB01. doi: 10.7567/JJAP.55.06GB01 CrossRefGoogle Scholar
  37. 37.
    Hoffman TB, Clubine B, Zhang Y et al (2014) Optimization of Ni–Cr flux growth for hexagonal boron nitride single crystals. J Cryst Growth 393:114–118. doi: 10.1016/j.jcrysgro.2013.09.030 CrossRefGoogle Scholar
  38. 38.
    Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700. doi: 10.1021/nn1003937 CrossRefGoogle Scholar
  39. 39.
    Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390. doi: 10.1002/adfm.201102111 CrossRefGoogle Scholar
  40. 40.
    Buscema M, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res 7:561–571. doi: 10.1007/s12274-014-0424-0 CrossRefGoogle Scholar
  41. 41.
    Chakraborty B, Bera A, Muthu DVS et al (2012) Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys Rev B 85:161403. doi: 10.1103/PhysRevB.85.161403 CrossRefGoogle Scholar
  42. 42.
    Zhou K-G, Withers F, Cao Y et al (2014) Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures. ACS Nano 8:9914–9924. doi: 10.1021/nn5042703 CrossRefGoogle Scholar
  43. 43.
    Xu X, Goodman DW (1993) The preparation and characterization of ultra-thin silicon dioxide films on a Mo(110) surface. Surf Sci 282:323–332. doi: 10.1016/0039-6028(93)90937-F CrossRefGoogle Scholar
  44. 44.
    Mak KF, He K, Lee C et al (2012) Tightly bound trions in monolayer MoS2. Nat Mater 12:207–211. doi: 10.1038/nmat3505 CrossRefGoogle Scholar
  45. 45.
    Sercombe D, Schwarz S, Del Pozo-Zamudio O et al (2013) Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci Rep. doi: 10.1038/srep03489 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Aspasia Antonelou
    • 1
    • 2
  • T. Hoffman
    • 3
  • J. H. Edgar
    • 3
  • Spyros N. Yannopoulos
    • 1
  1. 1.Foundation for Research and Technology Hellas – Institute of Chemical Engineering Sciences (FORTH/ICE-HT)Rio, PatrasGreece
  2. 2.Department of Materials ScienceUniversity of PatrasRio, PatrasGreece
  3. 3.Department of Chemical EngineeringKansas State UniversityManhattanUSA

Personalised recommendations