Advertisement

Journal of Materials Science

, Volume 52, Issue 11, pp 6635–6646 | Cite as

Self-supported copper (Cu) and Cu-based nanoparticle growth by bottom-up process onto borophosphate glasses

  • Guilherme F. Lenz
  • Rafael A. Bini
  • Thiago P. Bueno
  • Rodrigo J. de Oliveira
  • Jorlandio F. Felix
  • Ricardo Schneider
Original Paper

Abstract

In this study, we present a new method for obtaining an effective catalytic system composed of glass, with Cu or CuO nanoparticle growth on a glass matrix through bottom-up process. The system is based on active borophosphate glass material doped with \(\hbox {Cu}^{+}\) ions, which was obtained by a classical melt-quenching glass production technique. The thermal annealing of doped glasses under reductive/oxidative atmosphere enables the glassy material to act successfully as host material of both copper and copper oxide nanoparticles. We have investigated the structural and optical properties of the \(\hbox {Cu}^{0}\) and CuO nanostructures by using X-ray diffraction, scanning electron microscopy, electron paramagnetic resonance and Raman spectroscopy. Supported nanostructures with triangular and acicular shape were made without the necessity of chelating agents. The catalytic activity of these systems was efficiently tested for the reduction of p-nitrophenol in the presence of \(\hbox {NaBH}_{4}\), achieving a good rate constant around \(2.8 \times 10^{-3}\) and 7.3 \(\times 10^{-3}\,\hbox {s}^{-1}\) for \(\hbox {Cu}^{0}\) and CuO nanostructures, respectively. The catalyst was reused for three times without losing its activity significantly, simply taking and washing the pellet in fresh water, making these materials promising candidates for applications in the fields of catalysis.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Thermal Annealing Metallic Copper Nanocatalysts 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Anderson Pereira and Joaquim P. Gomes for Raman and XRD measurements. Furthermore, we thank the Brazilian agency CNPq, CAPES, FAPDF (193.001.078/2015) and FUNASA (25100.011.260/2014-17) for financial support and the research scholarship. They would also like to thank LABNANO/CBPF, for technical support during the scanning electron microscopy work. We thank Matheus H. Lazzarin for his manuscript reading.

Supplementary material

10853_2017_899_MOESM1_ESM.pdf (329 kb)
Supplementary material 1 (pdf 329 KB)

References

  1. 1.
    Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11(20):3805. doi: 10.1039/b900654k CrossRefGoogle Scholar
  2. 2.
    Brow RK (1993) Nature of alumina in phosphate glass: I, properties of sodium aluminophosphate glass. J Am Ceram Soc 76(4):913–918. doi: 10.1111/j.1151-2916.1993.tb05315.x CrossRefGoogle Scholar
  3. 3.
    Brow RK (2000) Review: the structure of simple phosphate glasses. J Non Cryst Solids 263–264:1–28. doi: 10.1016/s0022-3093(99)00620-1 CrossRefGoogle Scholar
  4. 4.
    Brow RK, Kirkpatrick RJ, Turner GL (1993) Nature of alumina in phosphate glass: II, structure of sodium alurninophosphate glass. J Am Ceram Soc 76(4):919–928. doi: 10.1111/j.1151-2916.1993.tb05316.x CrossRefGoogle Scholar
  5. 5.
    Burton PD, Boyle TJ, Datye AK (2011) Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. J Catal 280(2):145–149. doi: 10.1016/j.jcat.2011.03.022 CrossRefGoogle Scholar
  6. 6.
    Chahadih A, Hamzaoui HE, Cristini O, Bigot L, Bernard R, Kinowski C, Bouazaoui M, Capoen B (2012) \(\text{ H }_2\)-induced copper and silver nanoparticle precipitation inside sol–gel silica optical fiber preforms. Nanoscale Res Lett 7(1):487. doi: 10.1186/1556-276x-7-487 CrossRefGoogle Scholar
  7. 7.
    Chahine A, Et-tabirou M, Elbenaissi M, Haddad M, Pascal J (2004) Effect of CuO on the structure and properties of \((50-\text{ x }/2)\text{ Na }_2\text{ O }\)–xCuO–\((50-\text{ x }/2)\text{ P }_{2}\text{ O }_{5}\) glasses. Mater Chem Phys 84(2–3):341–347. doi: 10.1016/j.matchemphys.2003.11.009 CrossRefGoogle Scholar
  8. 8.
    Chen XK, Irwin JC, Franck JP (1995) Evidence for a strong spin-phonon interaction in cupric oxide. Phys. Rev. B 52(18):R13,130–R13,133. doi: 10.1103/physrevb.52.r13130 CrossRefGoogle Scholar
  9. 9.
    Cheng X, Fu A, Li H, Wang Y, Guo P, Liu J, Zhang J, Zhao XS (2015) Sustainable preparation of copper particles decorated carbon microspheres and studies on their bactericidal activity and catalytic properties. ACS Sustain Chem Eng 3(10):2414–2422. doi: 10.1021/acssuschemeng.5b00382 CrossRefGoogle Scholar
  10. 10.
    Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096. doi: 10.1039/b707314n CrossRefGoogle Scholar
  11. 11.
    Cuenya BR (2013) Metal nanoparticle catalysts beginning to shape-up. Acc Chem Res 46(8):1682–1691. doi: 10.1021/ar300226p CrossRefGoogle Scholar
  12. 12.
    Datta KKR, Kulkarni C, Eswaramoorthy M (2010) Aminoclay: a permselective matrix to stabilize copper nanoparticles. Chem Commun 46(4):616–618. doi: 10.1039/b919421e CrossRefGoogle Scholar
  13. 13.
    Debbichi L, de Lucas MCM, Pierson JF, Krüger P (2012) Vibrational properties of CuO and \(\text{ Cu }_4\text{ O }_{3}\) from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C 116(18):10232–10237. doi: 10.1021/jp303096m CrossRefGoogle Scholar
  14. 14.
    Ducel J, Videau J, Couzi M (1993) Structural study of borophosphate glasses by Raman and infrared spectroscopy. Phys Chem Glasses 34(5):212–218Google Scholar
  15. 15.
    Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 1. Silver-only aqueous suspensions via hydrogen reduction. J Phys Chem B 108(37):13948–13956. doi: 10.1021/jp047565s CrossRefGoogle Scholar
  16. 16.
    Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811. doi: 10.1021/acs.chemrev.5b00482 CrossRefGoogle Scholar
  17. 17.
    Guo M, Zhao Y, Zhang F, Xu L, Yang H, Song X, Bu Y (2016) Reduced graphene oxide-stabilized copper nanocrystals with enhanced catalytic activity and SERS properties. RSC Adv. 6(56):50587–50594. doi: 10.1039/c6ra05186c CrossRefGoogle Scholar
  18. 18.
    Ilieva L, Tabakova T, Pantaleo G, Ivanov I, Zanella R, Paneva D, Velinov N, Sobczak J, Lisowski W, Avdeev G, Venezia A (2013) Nano-gold catalysts on Fe-modified ceria for pure hydrogen production via WGS and PROX: effect of preparation method and Fe-doping on the structural and catalytic properties. Appl Catal A Gen 467:76–90. doi: 10.1016/j.apcata.2013.07.014 CrossRefGoogle Scholar
  19. 19.
    Iskandar F (2009) Nanoparticle processing for optical applications—a review. Adv Powder Technol 20(4):283–292. doi: 10.1016/j.apt.2009.07.001 CrossRefGoogle Scholar
  20. 20.
    Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) Reduction of CuO and \(\text{ Cu }_2\text{ O }\) with \(\text{ H }_2\) : H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125(35):10684–10692. doi: 10.1021/ja0301673 CrossRefGoogle Scholar
  21. 21.
    Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas S, Pathak A (2016) Shape-dependent catalytic activity of CuO nanostructures. J Catal 336:11–22. doi: 10.1016/j.jcat.2015.12.017 CrossRefGoogle Scholar
  22. 22.
    Koudelka L, Mošner P, Zeyer M, Jäger C (2005) Structure and properties of mixed sodium–lead borophosphate glasses. J Non Cryst Solids 351(12–13):1039–1045. doi: 10.1016/j.jnoncrysol.2005.01.015 CrossRefGoogle Scholar
  23. 23.
    Li J, Sun F, Gu K, Wu T, Zhai W, Li W, Huang S (2011) Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp. Appl Catal A Gen 406(1–2):51–58. doi: 10.1016/j.apcata.2011.08.007 CrossRefGoogle Scholar
  24. 24.
    Li J, Wang Z, Chen C, Huang S (2014) Atomic-scale observation of migration and coalescence of au nanoclusters on YSZ surface by aberration-corrected STEM. Sci Rep 4:1–6. doi: 10.1038/srep05521 Google Scholar
  25. 25.
    Li M, Chen G (2013) Revisiting catalytic model reaction p-nitrophenol/\(\text{ NaBH }_4\) using metallic nanoparticles coated on polymeric spheres. Nanoscale 5(23):11,919. doi: 10.1039/c3nr03521b CrossRefGoogle Scholar
  26. 26.
    Lignier P, Bellabarba R, Tooze RP (2012) Scalable strategies for the synthesis of well-defined copper metal and oxidenanocrystals. Chem Soc Rev 41(5):1708–1720. doi: 10.1039/c1cs15223h CrossRefGoogle Scholar
  27. 27.
    Mercier C, Palavit G, Montagne L, Follet-Houttemane C (2002) A survey of transition-metal-containing phosphate glasses. C R Chim 5(11):693–703. doi: 10.1016/s1631-0748(02)01437-6 CrossRefGoogle Scholar
  28. 28.
    Moguš-Milanković A, Gajović A, Šantić A, Day D (2001) Structure of sodium phosphate glasses containing \(\text{ A }l_2\text{ O }_3\) and/or \(\text{ Fe }_2\text{ O }_3\). Part I. J Non Cryst Solids 289(1–3):204–213. doi: 10.1016/s0022-3093(01)00701-3 CrossRefGoogle Scholar
  29. 29.
    Nelson BN, Exarhos GJ (1979) Vibrational spectroscopy of cation-site interactions in phosphate glasses. J Chem Phys 71(7):2739. doi: 10.1063/1.438679 CrossRefGoogle Scholar
  30. 30.
    Pereira AJ, Gomes JP, Lenz GF, Schneider R, Chaker JA, de Souza PEN, Felix JF (2016) Facile shape-controlled fabrication of copper nanostructures on borophosphate glasses: synthesis, characterization, and their highly sensitive surface-enhanced Raman scattering (SERS) properties. J Phys Chem C 120(22):12265–12272. doi: 10.1021/acs.jpcc.6b02881 CrossRefGoogle Scholar
  31. 31.
    Pestryakov A, Lunin V, Bogdanchikova N, Petranovskii V, Knop-Gericke A (2003) Supported foam-silver catalysts for alcohol partial oxidation. Catal Commun 4(7):327–331. doi: 10.1016/s1566-7367(03)00075-x CrossRefGoogle Scholar
  32. 32.
    Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang W, Stevenson KJ, Henkelman G (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J Phys Chem C 117(15):7598–7604. doi: 10.1021/jp312588u CrossRefGoogle Scholar
  33. 33.
    Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A Physicochem Eng Asp 196(2–3):247–257. doi: 10.1016/s0927-7757(01)01040-8 CrossRefGoogle Scholar
  34. 34.
    Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3. doi: 10.1186/1477-3155-2-3 CrossRefGoogle Scholar
  35. 35.
    Santana SR, Borba FSL, Pedrosa GG, Cruz PAS, Longo RL (2006) Silver diffusion and clustering in oxyfluoride glasses investigated by molecular dynamics simulations. J Comput Aided Mater Des 12(2–3):101–110. doi: 10.1007/s10820-006-9001-5 CrossRefGoogle Scholar
  36. 36.
    Sasmal AK, Dutta S, Pal T (2016) A ternary \(\text{ Cu }_2\text{ O }\)–Cu–CuO nanocomposite: a catalyst with intriguing activity. Dalton Trans 45(7):3139–3150. doi: 10.1039/c5dt03859f CrossRefGoogle Scholar
  37. 37.
    Scagliotti M, Villa M, Chiodelli G (1987) Short range order in the network of the borophosphate glasses: Raman results. J Non Cryst Solids 93(2–3):350–360. doi: 10.1016/s0022-3093(87)80180-1 CrossRefGoogle Scholar
  38. 38.
    Schneider R, Felix JF, Moura LG, Morais PC (2014) One step fabrication of glass-silver@core-shell fibers: silver-doped phosphate glasses as precursors of SERS substrates. J Mater Chem C 2(42):9021–9027. doi: 10.1039/c4tc01569j CrossRefGoogle Scholar
  39. 39.
    Schneider R, Schreiner WH, Santa-Cruz PA (2013) Hybrid assembly of double nanofilm as active media for photonic devices. J Lumin 136:172–177. doi: 10.1016/j.jlumin.2012.11.023 CrossRefGoogle Scholar
  40. 40.
    Solache-Carranco H, Juarez-Diaz G, Galvan-Arellano M, Martinez-Juarez J, R, GRP, Pena-Sierra R (2008) Raman scattering and photoluminescence studies on \(\text{ Cu }_2\text{ O }\). In: 2008 5th international conference on electrical engineering, computing science and automatic control. Institute of Electrical & Electronics Engineers (IEEE). doi: 10.1109/iceee.2008.4723375
  41. 41.
    Sousa-Castillo A, Comesaña-Hermo M, Rodríguez-González B, Pérez-Lorenzo M, Wang Z, Kong XT, Govorov AO, Correa-Duarte MA (2016) Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in \(\text{ au }-{\text{ TiO }}_2\) nanoarchitectures. J Phys Chem C 120(21):11690–11699. doi: 10.1021/acs.jpcc.6b02370 CrossRefGoogle Scholar
  42. 42.
    Srinivasulu K, Omkaram I, Obeid H, Kumar A, Rao J (2012) Spectral studies on \(\text{ Cu }^{2+}\) ions in sodium–lead borophosphate glasses. Phys B Condens Matter 407(24):4741–4748. doi: 10.1016/j.physb.2012.09.010 CrossRefGoogle Scholar
  43. 43.
    Szumera M, Wacławska I, Sułowska J (2016) Influence of CuO and ZnO addition on the multicomponent phosphate glasses: spectroscopic studies. J Mol Struct 1114:78–83. doi: 10.1016/j.molstruc.2016.02.026 CrossRefGoogle Scholar
  44. 44.
    Tao F (2014) Metal nanoparticles for catalysis: advances and applications. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  45. 45.
    Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1(8):908–916. doi: 10.1021/cs200208a CrossRefGoogle Scholar
  46. 46.
    Yeshchenko OA, Dmitruk IM, Dmytruk AM, Alexeenko AA (2007) Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix. Mater Sci Eng B 137(1–3):247–254. doi: 10.1016/j.mseb.2006.11.030 CrossRefGoogle Scholar
  47. 47.
    Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev 287:114–136. doi: 10.1016/j.ccr.2015.01.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Tecnológica Federal Paraná-UTFPRToledoBrazil
  2. 2.Instituto de Física e QuímicaUniversidade de Federal do Espiríto Santo-UFESVitóriaBrazil
  3. 3.Departamento de QuímicaUniversidade Estadual da Paraíba-UEPBCampina GrandeBrazil
  4. 4.Instituto de Física, Núcleo de Física AplicadaUniversidade de Brasília-UNBBrasíliaBrazil

Personalised recommendations