Journal of Materials Science

, Volume 52, Issue 11, pp 6469–6475 | Cite as

Area-dependent electroforming and switching polarity reversal across TiO2/Nb:SrTiO3 oxide interfaces

Original Paper


Vacancy-mediated transport drives the functionality of oxide-based nonvolatile memristive devices. Here, we report the size dependence of TiO2/Nb:STO heterojunctions for electroforming and the subsequent resistive switching process. Conductive AFM measurements suggest that the forming and reset voltages both decrease with increasing junction size. We also show oxygen flow ratio changes during fabrication, and post-annealing impacts the set voltage and resistance ratio through changes in available oxygen vacancies. Finally, a polarity reversal between eight-wise and counter-eight-wise switching occurs after vacuum and ambient anneals, thus modulating oxygen vacancy availability and changing (reversibly) the mechanism from vacancy migration to an electron trap/detrap process.


Oxygen Vacancy Resistive Switching TiO2 Thin Film Resistance Ratio High Resistance State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by University of Massachusetts-Amherst start-up funding and the UMass Center for Hierarchical Manufacturing (CHM), a NSF Nanoscale Science and Engineering Center (CMMI-1025020). The authors also acknowledge use of the facilities at the CHM Conte Nanotechnology Cleanroom for thin-film deposition and lithography processes.


  1. 1.
    Yang JJ, Pickett MD, Li X, OhlbergDouglas AA, Stewart DR, Williams RS (2008) Nat Nanotechnol 3:429. doi:
  2. 2.
    Kim KM, Jeong DS, Hwang CS (2011) Nanotechnology 22:254002CrossRefGoogle Scholar
  3. 3.
    Yang JJ, Feng M, Matthew DP et al (2009) Nanotechnology 20:215201CrossRefGoogle Scholar
  4. 4.
    Bousoulas P, Michelakaki I, Tsoukalas D (2014) J Appl Phys 115:034516. doi: 10.1063/1.4862797 CrossRefGoogle Scholar
  5. 5.
    Kim KM, Choi BJ, Lee MH et al (2011) Nanotechnology 22:254010CrossRefGoogle Scholar
  6. 6.
    Ielmini D, Nardi F, Cagli C (2011) Nanotechnology 22:254022CrossRefGoogle Scholar
  7. 7.
    Wylezich H, Mähne H, Rensberg J et al (2014) ACS Appl Mater Interfaces 6:17474. doi: 10.1021/am5021149 CrossRefGoogle Scholar
  8. 8.
    Zazpe R, Ungureanu M, Golmar F et al (2014) J Mater Chem C 2:3204. doi: 10.1039/C3TC31819B CrossRefGoogle Scholar
  9. 9.
    Lanza M, Zhang K, Porti M et al (2012) Appl Phys Lett 100:123508. doi: 10.1063/1.3697648 CrossRefGoogle Scholar
  10. 10.
    Sharath SU, Kurian J, Komissinskiy P et al (2014) Appl Phys Lett 105:073505. doi: 10.1063/1.4893605 CrossRefGoogle Scholar
  11. 11.
    Szot K, Speier W, Bihlmayer G, Waser R (2006) Nat Mater 5:312CrossRefGoogle Scholar
  12. 12.
    Hou J, Nonnenmann SS, Qin W, Bonnell DA (2014) Adv Funct Mater 24:4113. doi: 10.1002/adfm.201304121 CrossRefGoogle Scholar
  13. 13.
    Lee H, Kim H, Van TN, Kim D-W, Park JY (2013) ACS Appl Mater Interfaces 5:11668. doi: 10.1021/am4032086 CrossRefGoogle Scholar
  14. 14.
    Kubicek M, Schmitt R, Messerschmitt F, Rupp JLM (2015) ACS Nano 9:10737. doi: 10.1021/acsnano.5b02752 CrossRefGoogle Scholar
  15. 15.
    Pan F, Gao S, Chen C, Song C, Zeng F (2014) Mater Sci Eng R Rep 83:1. doi: 10.1016/j.mser.2014.06.002 CrossRefGoogle Scholar
  16. 16.
    Nauenheim C, Kuegeler C, Ruediger A, Waser R (2010) Appl Phys Lett 96:122902. doi: 10.1063/1.3367752 CrossRefGoogle Scholar
  17. 17.
    Sharma AA, Karpov IV, Kotlyar R, Kwon J, Skowronski M, Bain JA (2015) J Appl Phys 118:114903. doi: 10.1063/1.4930051 CrossRefGoogle Scholar
  18. 18.
    Gala DK, Sharma AA, Li D, Goodwill JM, Bain JA, Skowronski M (2016) APL Mater 4:016101. doi: 10.1063/1.4939181 CrossRefGoogle Scholar
  19. 19.
    Sharma AA, Noman M, Abdelmoula M, Skowronski M, Bain JA (2014) Adv Funct Mater 24:5522. doi: 10.1002/adfm.201400461 CrossRefGoogle Scholar
  20. 20.
    Chen A (2014) IEEE Electron Device Lett 35:57. doi: 10.1109/LED.2013.2288262 CrossRefGoogle Scholar
  21. 21.
    Govoreanu B, Kar GS, Chen YY et al (2011) In: Electron devices meeting (IEDM), 2011 IEEE InternationalGoogle Scholar
  22. 22.
    Ghenzi N, Rozenberg MJ, Llopis R, Levy P, Hueso LE, Stoliar P (2015) Appl Phys Lett 106:123509. doi: 10.1063/1.4916516 CrossRefGoogle Scholar
  23. 23.
    Lee JS, Lee S, Noh TW (2015) Appl Phys Rev 2:031303. doi: 10.1063/1.4929512 CrossRefGoogle Scholar
  24. 24.
    Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R (2011) Nanotechnology 22:254001CrossRefGoogle Scholar
  25. 25.
    Dittmann R, Muenstermann R, Krug I et al (2012) Proc IEEE 100:1979. doi: 10.1109/JPROC.2012.2188771 CrossRefGoogle Scholar
  26. 26.
    Feng M, Yang JJ, Julien B, Gilberto M-R, Williams RS (2011) Nanotechnology 22:254007CrossRefGoogle Scholar
  27. 27.
    Sawa A, Fujii T, Kawasaki M, Tokura Y (2004) Appl Phys Lett 85:4073. doi: 10.1063/1.1812580 CrossRefGoogle Scholar
  28. 28.
    Yang JJ, Borghetti J, Murphy D, Stewart DR, Williams RS (2009) Adv Mater 21:3754. doi: 10.1002/adma.200900822 CrossRefGoogle Scholar
  29. 29.
    Shibuya K, Dittmann R, Mi S, Waser R (2010) Adv Mater 22:411. doi: 10.1002/adma.200901493 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Massachusetts-AmherstAmherstUSA

Personalised recommendations