Journal of Materials Science

, Volume 52, Issue 11, pp 6341–6348 | Cite as

Comparing photocatalytic activities of commercially available iron-doped and iron-undoped aeroxide TiO2 P25 powders

  • Johannes Melcher
  • Shaik Feroz
  • Detlef Bahnemann
Original Paper


Transition metal doping is an appropriate way to increase the photocatalytic activity of TiO2 as it offers the chance to also utilize visible light to generate charge carriers. Here, we investigated the photocatalytic activity of commercially available Evonik Aeroxide® TiO2 P25 and its iron-doped analog Evonik Aeroxide® TiO2 PF2. For this study, we used as model reaction the photocatalytic oxidation of methanol (CH3OH) to formaldehyde (HCHO) employing artificial solar illumination with and without UV-light. Apparently, the iron content in PF2 is too high and therefore has a negative effect on its photocatalytic activity. Furthermore, by the comparison of photonic efficiencies (ξ) and quantum efficiencies (Φ) we could show the importance of not just calculating photonic efficiencies but also shed some light on the mechanism how the charge carriers in P25 are generated.


TiO2 Rutile Photocatalytic Activity Doping Concentration Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the workgroup of Dr. Bigall for using their photospectrometer and the “European Regional Development Fund” for supporting the programme “Europa fördert Niedersachsen,” especially the Project Nanokomp—Nanostrukturierte Kompositmaterialien—von der Entwicklung in die Produktion (WA3-80125215).


  1. 1.
    Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212:145–156. doi: 10.1006/jcat.2002.3783 CrossRefGoogle Scholar
  2. 2.
    Theurich J, Lindner M, Bahnemann DW (1996) Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study. Langmuir 12:6368–6376. doi: 10.1021/la960228t CrossRefGoogle Scholar
  3. 3.
    Lindner M, Bahnemann DW, Hirthe B, Griebler W-D (1997) Solar water detoxification: novel TiO2 powders as highly active photocatalysts. J Sol Energy Eng 119:120–125. doi: 10.1115/1.2887890 CrossRefGoogle Scholar
  4. 4.
    Al Jabri H, Feroz S (2015) Studies on the effect of TiO2 nano photocatalysis in the pretreatment of seawater reverse osmosis desalination. Int J Environ Sci 6:6–10. doi: 10.7763/IJESD.2015.V6.653 Google Scholar
  5. 5.
    Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801. doi: 10.1038/nmat3697 CrossRefGoogle Scholar
  6. 6.
    Grätzel M, Rotzinger FP (1985) The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV). Chem Phys Lett 118:474–477. doi: 10.1016/0009-2614(85)85335-5 CrossRefGoogle Scholar
  7. 7.
    Etacheri V, Di Valentin C, Schneider J et al (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C Photochem Rev 25:1–29. doi: 10.1016/j.jphotochemrev.2015.08.003 CrossRefGoogle Scholar
  8. 8.
    Cong Y, Zhang J, Chen F et al (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 Co-doped with nitrogen and iron(III). J Phys Chem C 111:10618–10623. doi: 10.1021/jp0727493 CrossRefGoogle Scholar
  9. 9.
    Tong T, Zhang J, Tian B et al (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155:572–579. doi: 10.1016/j.jhazmat.2007.11.106 CrossRefGoogle Scholar
  10. 10.
    Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. doi: 10.1021/cr5001892 CrossRefGoogle Scholar
  11. 11.
    Bloh JZ, Dillert R, Bahnemann DW (2012) Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J Phys Chem C 116:25558–25562. doi: 10.1021/jp307313z CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878. doi: 10.1021/jp982948+ CrossRefGoogle Scholar
  13. 13.
    Zhu J, Chen F, Zhang J et al (2006) Fe3+–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180:196–204. doi: 10.1016/j.jphotochem.2005.10.017 CrossRefGoogle Scholar
  14. 14.
    Caratto V, Locardi F, Alberti S et al (2016) Different sol–gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. J Sol–Gel Sci Technol 80:152–159. doi: 10.1007/s10971-016-4057-5 CrossRefGoogle Scholar
  15. 15.
    Villa S, Caratto V, Locardi F et al (2016) Enhancement of TiO2 NPs activity by Fe3O4 nano-seeds for removal of organic pollutants in water. Materials (Basel) 9:771. doi: 10.3390/ma9090771 CrossRefGoogle Scholar
  16. 16.
    Lei XF, Zhang ZN, Wu ZX et al (2017) Synthesis and characterization of Fe, N and C tri-doped polymorphic TiO2 and the visible light photocatalytic reduction of Cr(VI). Sep Purif Technol 174:66–74. doi: 10.1016/j.seppur.2016.09.039 CrossRefGoogle Scholar
  17. 17.
    Wang C, Rabani J, Bahnemann DW, Dohrmann JK (2002) Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J Photochem Photobiol A Chem 148:169–176. doi: 10.1016/S1010-6030(02)00087-4 CrossRefGoogle Scholar
  18. 18.
    Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A Chem 216:179–182. doi: 10.1016/j.jphotochem.2010.07.024 CrossRefGoogle Scholar
  19. 19.
    Verbruggen S, Tytgat T, Van Passel S et al (2014) Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air. Chem Pap 68:1273–1278. doi: 10.2478/s11696-014-0557-3 CrossRefGoogle Scholar
  20. 20.
    Kisch H, Bahnemann D (2015) Best practice in photocatalysis: Comparing rates or apparent quantum yields? J Phys Chem Lett 6:1907–1910. doi: 10.1021/acs.jpclett.5b00521 CrossRefGoogle Scholar
  21. 21.
    Braslavsky SE, Braun AM, Cassano AE et al (2011) Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl Chem 83:931–1014. doi: 10.1351/PAC-REC-09-09-36 CrossRefGoogle Scholar
  22. 22.
    Mangold H, Scholz M, Schachtely U, Deller K (2001) Method for improving the stability of polymers. United States patent US 6,319,974Google Scholar
  23. 23.
    Meyer J, Hasenzahl S, Riedemann H (2006) Structurally modified titanium dioxides. United States patent US 2006/0159636 A1Google Scholar
  24. 24.
    Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421. doi: 10.1042/bj0550416 CrossRefGoogle Scholar
  25. 25.
    Kisch H (2013) Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew Chem Int Ed Engl 52:812–847. doi: 10.1002/anie.201201200 CrossRefGoogle Scholar
  26. 26.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637. doi: 10.1002/pssb.19660150224 CrossRefGoogle Scholar
  27. 27.
    Duret A, Grätzel M (2005) Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B 109:17184–17191. doi: 10.1021/jp044127c CrossRefGoogle Scholar
  28. 28.
    Wen Y, Segall J, Dulligan M, Wittig C (1994) Photodissociation of methanol at 193.3 nm: translational energy release spectra. J Chem Phys 101:5665. doi: 10.1063/1.467352 CrossRefGoogle Scholar
  29. 29.
    Marugán J, Hufschmidt D, López-Muñoz M-J et al (2006) Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. Appl Catal B Environ 62:201–207. doi: 10.1016/j.apcatb.2005.07.013 CrossRefGoogle Scholar
  30. 30.
    Wang C, Pagel R, Bahnemann DW, Dohrmann JK (2004) Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation. J Phys Chem B 108:14082–14092. doi: 10.1021/jp048046s CrossRefGoogle Scholar
  31. 31.
    Zhou M, Yu J, Cheng B (2006) Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater 137:1838–1847. doi: 10.1016/j.jhazmat.2006.05.028 CrossRefGoogle Scholar
  32. 32.
    Freitag J, Domínguez A, Niehaus TA et al (2015) Nitrogen(II) oxide charge transfer complexes on TiO2: a new source for visible-light activity. J Phys Chem C 119:4488–4501. doi: 10.1021/jp5108069 CrossRefGoogle Scholar
  33. 33.
    Dimitrijevic NM, Shkrob IA, Gosztola DJ, Rajh T (2012) Dynamics of interfacial charge transfer to formic acid, formaldehyde, and methanol on the surface of TiO2 nanoparticles and its role in methane production. J Phys Chem C 116:878–885. doi: 10.1021/jp2090473 CrossRefGoogle Scholar
  34. 34.
    Hirakawa T, Yawata K, Nosaka Y (2007) Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl Catal A Gen 325:105–111. doi: 10.1016/j.apcata.2007.03.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Johannes Melcher
    • 1
  • Shaik Feroz
    • 2
  • Detlef Bahnemann
    • 1
    • 3
  1. 1.Institut für Technische ChemieLeibniz Universität HannoverHannoverGermany
  2. 2.Caledonian College of EngineeringSeebOman
  3. 3.Laboratory for Nanocomposite Materials, Department of Photonics, Faculty of PhysicsSaint-Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations