Advertisement

Journal of Materials Science

, Volume 52, Issue 10, pp 6063–6073 | Cite as

Influence of plastic deformation on the precipitation sequence in an AA6061 alloy

  • A. Chbihi
  • S. Vincent
  • J. Ribis
  • C. Toffolon-Masclet
  • J. Garnier
Original Paper
  • 264 Downloads

Abstract

The purpose of this work is to study the effect of prior plastic deformation on the precipitation mechanisms of MgxSiy in an AA6061 alloy. Differential scanning calorimetry (DSC), tensile testing and transmission electron microscopy (TEM) were used to characterize the precipitation sequence in samples that were isothermally aged at 180 °C with and without prior plastic deformation. Compressively deforming the AA6061 alloy by 4% caused a shift in the exothermal precipitation peaks to lower temperatures (DSC) and enabled the peak strength condition to be reached after a shorter aging period, revealing that plastic deformation accelerated the precipitation kinetics. TEM analysis determined that the accelerated precipitation kinetics in the deformed material was due to heterogeneous precipitation of the Q′ phase along dislocation lines and a modification of the precipitation sequence with the L, C and Q′ phases dominating over the β′′ phase (which is dominated in the non-deformed material). Additionally, the formation of β′ was largely suppressed by plastic deformation.

Keywords

Exothermic Peak Differential Scanning Calorimetry Thermogram Isothermal Aging AA6061 Alloy Precipitation Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Dr T. Guilbert is gratefully acknowledged for providing access to Multi-HTC DSC instrument and assistance in thermograms acquisition.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Iracane D, Chaix P, Alamo A (2008) Jules Horowitz Reactor: a high performance material testing reactor. Compt Rend Phys 9:445–456CrossRefGoogle Scholar
  2. 2.
    Guinier A, Lambot H (1948) Radiocristallographie-mecanisme de la precipitation dans les alliages ternaire Al-Si-Mg et quaternaire Al-Cu-Si-Mg. Comput Rend Acad Sci 227:74–75Google Scholar
  3. 3.
    Lutts A (1961) Pre-precipitation in Al–Mg–Ge and Al–Mg–Si alloys. Acta Metall 9:577–586CrossRefGoogle Scholar
  4. 4.
    Andersen J, Zandbergen HW, Jancen J, Traeholt C, Tundal U, Reiso O (1998) The crystal structure of the β’’ phase In Al–Mg–Si alloys. Acta Mater 46:3283–3298CrossRefGoogle Scholar
  5. 5.
    Lorimer GW (1978) Precipitation in aluminium alloys. In: Russell KC, Aaronson HI (eds) Precipitation processes in solids. Metallurgical Society of AIME, Warrendale, PA, pp 87–119Google Scholar
  6. 6.
    Eduards GA, Stiller K, Dunlop GL, Couper MJ (1998) The precipitation sequence in Al–Mg–Si alloys. Acta Mater 46:3893–3904CrossRefGoogle Scholar
  7. 7.
    Marioara CD, Andersen SJ, Jansen J, Zandbergen HW (2001) Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater 49:321–328CrossRefGoogle Scholar
  8. 8.
    Hasting HS, Frøseth AG, Andersen SJ, Vissers R, Walmsley JC, Marioara CD, Danoix F, Lefebvre W, Holmestad R (2009) Composition of β″ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. J Appl Phys 106:123527CrossRefGoogle Scholar
  9. 9.
    Vissers R, van Huis MA, Jansen J, Zandbergen HW, Marioara CD, Andersen SJ (2007) The crystal structure of the β’ phase in Al–Mg–Si alloys. Acta Mater 55:3815–3823CrossRefGoogle Scholar
  10. 10.
    Andersen SJ, Marioara CD, Vissers R, Frøseth A, Zandbergen HW (2007) The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2. Mater Sci Eng A 444:157–169CrossRefGoogle Scholar
  11. 11.
    Andersen SJ, Marioara CD, Frøseth A, Vissers R, Zandbergen HW (2005) Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater Sci Eng A 390:127–138CrossRefGoogle Scholar
  12. 12.
    Vissers R, Marioara CD, Andersen SJ, Holmestad R, (2008) Aluminium alloys. In: Proceedings of ICAA11, 22–26 September 2008, Aachen, Germany 2:1263–1269Google Scholar
  13. 13.
    Marioara CD, Andersen SJ, Stene TN, Hasting H, Walmsley J, Van Helvoort ATJ, Holmestad R (2007) The effect of Cu on precipitation in Al–Mg–Si alloys. Philos Mag 87:3385–3413CrossRefGoogle Scholar
  14. 14.
    Matsuda K, Sakaguchi Y, Miyata Y, Uetani Y, Sato T, Kamio A, Ikeno S (2000) Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy. J Mater Sci 35:179–189. doi: 10.1023/A:1004769305736 CrossRefGoogle Scholar
  15. 15.
    Ravi C, Wolverton C (2004) First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater 52:4213–4227CrossRefGoogle Scholar
  16. 16.
    Larché FR (1979) In: Nabarro FRN (ed) Dislocations in solids. North-Holland, AmsterdamGoogle Scholar
  17. 17.
    Kreye H (1970) Influence of dislocations on the growth of particles. Z Metall 61:108Google Scholar
  18. 18.
    Ardell AJ (1972) On the coarsening of grain boundary precipitates. Acta Metall 20:601–609CrossRefGoogle Scholar
  19. 19.
    Hoyt JJ (1991) On the coarsening of precipitates located on grain boundaries and dislocations. Acta Metall 39:2091–2098CrossRefGoogle Scholar
  20. 20.
    Cerri A, Leo P (2005) Influence of severe plastic deformation on aging of Al–Mg–Si alloys. Mater Sci Eng A 410–411:226–229CrossRefGoogle Scholar
  21. 21.
    Chrominski W, Wenner S, Marioara CD, Holmestad R, Lewandowska M (2016) Strengthening mechanisms in ultrafine grained Al–Mg–Si alloy processed by hydrostatic extrusion—Influence of ageing temperature. Mater Sci Eng A 669:447–458CrossRefGoogle Scholar
  22. 22.
    Teichmann K, Marioara CD, Andersen SJ, Pedersen KO, Gulbrandsen-Dahl S, Kolar M, Holmestad R, Marthinsen K (2011) HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy. Philos Mag 28:3744–3754CrossRefGoogle Scholar
  23. 23.
    Yassar RS, Field DP, Weiland H (2005) The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy; AA6022. Scr Mater 53:299–303CrossRefGoogle Scholar
  24. 24.
    Genevois C, Fabregue D, Deschamps A, Poole WJ (2006) On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy. Mater Sci Eng A 441:39–48CrossRefGoogle Scholar
  25. 25.
    Deschamps A, Livet F, Brechet Y (1998) Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstruct Evol Mech Prop Acta Mater 47:281–292Google Scholar
  26. 26.
    Sun DL, Yang DZ, Hong Y, Lei TC (1988) Effect of prior cold deformation on aging behavior of Al-2.73 wt-%Li alloy. In: Proceedings of the 8th ICSMA, Tempere, Finland. Pergamon Press, Oxford 591–596Google Scholar
  27. 27.
    Edwards MR, Whiley MJ (1994) The effect of prior stretching on the elevated temperature tensile behaviour of the aluminium-lithium alloy 8090. In: Proceedings of the 4th ICAA, Atlanta, Ga. Georgia Institute of Technology 473Google Scholar
  28. 28.
    Cassada WA, Shiflet GJ, Starke EA Jr (1991) The effect of plastic deformation on Al2CuLi (T) precipitation. Metall Trans A 22:299–306CrossRefGoogle Scholar
  29. 29.
    Ringer SP, Muddle BC, Polmear IJ (1995) Effects of cold work on precipitation in Al–Cu–Mg–(Ag) and Al–Cu–Li–(Mg–Ag) alloys. Metall Mater Trans A 26:1659–1671CrossRefGoogle Scholar
  30. 30.
    Kim JD, Park JK (1993) Effect of stretching on the precipitation kinetics of an Al-2.0Li-2.8Cu-0.5 Mg (−0.13Zr) alloy. Metall Trans A 24:2613–2621CrossRefGoogle Scholar
  31. 31.
    Dutta I, Allen SM (1991) A calorimetric study of precipitation in commercial aluminium alloy 6061. J Mater Sci Lett 10:323–326. doi: 10.1007/BF00719697 CrossRefGoogle Scholar
  32. 32.
    Marioara CD, Andersen SJ, Zandbergen HW, Holmestad R (2005) The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall Mater Trans A 36:691–702Google Scholar
  33. 33.
    Chbihi A, Sauvage X, Blavette D (2014) Influence of plastic deformation on the precipitation of Cr in copper. J Mater Sci 49:6240–6247. doi: 10.1007/s10853-014-8348-3 CrossRefGoogle Scholar
  34. 34.
    Martin JW (1998) Precipitation hardening, 2nd edn. Butterworth-Heinemann, Oxford, p 7Google Scholar
  35. 35.
    Torsaeter M, Lefebvre W, Marioara CD, Andersen SJ, Walmsley JC, Holmestad R (2011) Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scr Mater 64:817–820CrossRefGoogle Scholar
  36. 36.
    Militzer M, Sun WP, Jonas JJ (1994) Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall Mater 42:133CrossRefGoogle Scholar
  37. 37.
    Mishin Y, Herzig C (1999) Grain boundary diffusion: recent progress and future research. Mater Sci Eng A 260:55–71CrossRefGoogle Scholar
  38. 38.
    Gaber A, Gaffar MA, Mostafa MS, Abo Zeid EF (2007) Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J Alloys Compd 429:167–175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. Chbihi
    • 1
  • S. Vincent
    • 1
  • J. Ribis
    • 1
  • C. Toffolon-Masclet
    • 1
  • J. Garnier
    • 1
  1. 1.DEN-Service de Recherches Métallurgiques Appliquées, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations