Journal of Materials Science

, Volume 52, Issue 10, pp 5531–5536 | Cite as

Growth of LiF/LiBaF3 eutectic scintillator crystals and their optical properties

  • Shunsuke Kurosawa
  • Akihiro Yamaji
  • Jan Pejchal
  • Yuui Yokota
  • Yuji Ohashi
  • Kei Kamada
  • Akira Yoshikawa


Li-containing materials can be applied as neutron scintillators, and LiBaF3 can discriminate neutron and gamma rays. Moreover, LIF/LiBaF3 can have higher cross section of thermal-neutron capture compared with LiBaF3. In this study, LiF (82.5 mol%) and (Ba1−x RE x )F2 (17.5 mol%, RE = Ce and Eu, x = 0.002) eutectic crystals, LiF/RE:LiBaF3, were grown by the micropulling down method with different pulling rates (growth rate) in order to observe the eutectic structure. Lamellar microstructure was formed for each pulling rate. LiF/Ce:LiBaF3 excited by 5.5-MeV alpha rays had a broad peak at ~350 nm corresponding to 5d–4f transition of Ce3+. On the other hand, LiF/Eu:LiBaF3 had two scintillation processes; a sharp emission was originated from 6P7/2 → 8S7/2 transitions in the 4f electronic configuration of Eu2+ at 360 nm, and a broad one was attributed to Eu2+ trapped exciton recombination at 400–450 nm. Since scintillation light was observed for these materials, these scintillators are sensitive to neutrons.


Thermal Neutron BaF2 Lamellar Microstructure Scintillation Light Sharp Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by (1) Japan Society for the Promotion of Science (JSPS), KAKENHI Grant Number 14462961, 15597934, 15619740 (Grant-in-Aid for Young Scientists (B), S. Kurosawa), (2) Bilateral AS CR-JSPS Joint Research Project, (3) Japan Science and Technology Agency (JST), Development of Systems and Technology for Advanced Measurement and Analysis (SENTAN), (4) JST, Adaptable & Seamless Technology Transfer Program through Target-driven R&D, (5) the Association for the Progress of New Chemical Technology, (6) the Murata Science Foundation, (7) Nippon Sheet Glass Foundation for Materials Science and Engineering, (8) Tonen General Sekiyu Foundation, (9) Yazaki Memorial Foundation for Science and Technology, (10) Tokin Science and Technology Promotion Foundation, (11) Intelligent Cosmos Research Institute, (12) Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, and (13) International Collaboration Center Institute for Materials Research (ICC-IMR), Tohoku University. In addition, we would like to thank following persons for their support: Mr. Yoshihiro Nakamura of Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, and Mr. Hiroshi Uemura, Ms. Keiko Toguchi, Ms. Megumi Sasaki, Ms. Yuka Takeda and Ms. Kuniko Kawaguchi of IMR, Tohoku University.


  1. 1.
    Blakeley MP, Langan P, Niimura N, Podjarny A (2008) Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 18:593–600CrossRefGoogle Scholar
  2. 2.
    Chandra R, Davatz G, Gendotti U, Howard A (2010) “Fast neutron detection in homeland security applications.” Nucl Sci Symp Conf Rec (NSS/MIC) IEEE 508–511Google Scholar
  3. 3.
    Knoll GF (1979) Radiation detection and measurement. Wiley, New YorkGoogle Scholar
  4. 4.
    Parker JD, Hattori K, Fujioka H, Harada M, Iwaki S, Kabuki S, Kishimoto Y, Kubo H, Kurosawa S, Miuchi K, Nagae T, Nishimura H, Oku T, Sawano T, Shinohara T, Suzuki J, Takada A, Tanimori T, Ueno K (2013) Neutron imaging detector based on the μPIC micro-pixel chamber. Nucl Instrum Methods Phys Res A 697:23–31CrossRefGoogle Scholar
  5. 5.
    van Eijk Carel W E (2002) Neutron PSDs for the next generation of spallation neutron sources. Nucl Instrum Methods Phys Res A 477:383–390CrossRefGoogle Scholar
  6. 6.
    van Eijk Carel W E (2004) Inorganic scintillators for thermal neutron detection. Radiat Meas 38:337–342CrossRefGoogle Scholar
  7. 7.
    Sen I, Penumadu D, Williamson M, Miller LF, Green AD, Mabe AN (2011) Thermal neutron scintillator detectors based on poly (2-Vinylnaphthalene) composite films. IEEE Trans Nucl Sci 58:1386–1393CrossRefGoogle Scholar
  8. 8.
    Kawaguchi N, Yanagida T, Novoselov A, Kim KJ, Fukuda K, Yoshikawa A, Miyake M, Baba M (2008) “Neutron responses of Eu activated LiCaAIF6 scintillator” IEEE Nucl Sci Symp Conf Rec, NSS ‘08. IEEE 1174–1176Google Scholar
  9. 9.
    Ohashi Yoshihiro, Yasui Nobuhiro, Suzuki Tatsuya, Watanabe Masatoshi, Den Toru, Kamada Kei, Yokota Yuui, Yoshikawa Akira (2014) Orientation relationships of unidirectionally aligned GdAlO3/Al2O3 eutectic fibers. J Eur Ceram Soc 34(15):3849–3857CrossRefGoogle Scholar
  10. 10.
    Yoshikawa A, Nikl M, Boulon G, Fukuda T (2007) Crystal growth of Ce:PrF3 by micro-pulling-down method. Opt Mater 30:6–10CrossRefGoogle Scholar
  11. 11.
    Knitel MJ, Dorenbos P, De Haas JTM, Van Eijk CWE (1995) LiBaF3 as a thermal neutron scintillator. Radiat Meas 24:361–363CrossRefGoogle Scholar
  12. 12.
    Knitel MJ, Dorenbos P, de Haas JTM, van Eijk CWE (1996) LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination. Nucl Instrum Methods Phys Res A 374:197–201CrossRefGoogle Scholar
  13. 13.
    Combes CM, Dorenbos P, van Eijk CWE, Gesland JY, Rodnyi PA (1997) Optical and scintillation properties of LiBaF3:Ce crystals. J Lumin 72–74:753–755CrossRefGoogle Scholar
  14. 14.
    Gektin A, Shiran N, Voloshinovski A, Voronova V, Zimmerer G (1998) Scintillation in LiBaF3(Ce) crystals. IEEE Trans Nucl Sci 45:505–507CrossRefGoogle Scholar
  15. 15.
    Agulyanskii AI, Bessonova V (1982) “Meltability of salt mixtures containing lithium, barium, and lanthanum fluorides Russ”. J Inorg Chem 27:579–581; The American Ceramic Society and the National Institute of Standards and Technology, 2016. Figure Number 7490;
  16. 16.
    Shunsuke Kurosawa, Takayuki Yanagida, Yuui Yokota, Akira Yoshikawa (2012) “Crystal growth and scintillation properties of fluoride scintillators”. IEEE Trans Nucl Sci 59:2173–2176Google Scholar
  17. 17.
  18. 18.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  19. 19.
    Mahlik S, Wisniewski K, Grinberg M, Seo Hyo Jin (2010) Luminescence of LiBaF3 and KMgF3 doped with Eu2+. J Non Cryst Solids 356:1888–1892CrossRefGoogle Scholar
  20. 20.
    Kurosawa Shunsuke, Pejchal Jan, Wakahara Shingo, Yokota Yuui, Yoshikawa Akira (2013) Optical properties and radiation response of Ce:SrHfO3 prepared by the spark plasma sintering method. Radiat Meas 56:155–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shunsuke Kurosawa
    • 1
    • 2
  • Akihiro Yamaji
    • 3
  • Jan Pejchal
    • 4
  • Yuui Yokota
    • 1
  • Yuji Ohashi
    • 3
  • Kei Kamada
    • 1
    • 5
  • Akira Yoshikawa
    • 1
    • 3
    • 5
  1. 1.New Industry Creation Hatchery Center (NICHe)Tohoku UniversitySendaiJapan
  2. 2.Department of PhysicsYamagata UniversityYamagataJapan
  3. 3.Institute for Materials Research (IMR)Tohoku UniversitySendaiJapan
  4. 4.Institute of PhysicsAS CRPragueCzech Republic
  5. 5.C&A CorporationSendaiJapan

Personalised recommendations