Advertisement

Journal of Materials Science

, Volume 52, Issue 15, pp 8695–8732 | Cite as

A guided walk through Larry Hench’s monumental discoveries

  • Maziar Montazerian
  • Edgar D. Zanotto
In Honor of Larry Hench

Abstract

Here we review and summarize the groundbreaking scientific researches of the late Professor Larry L. Hench, including several of his key discoveries in materials science and engineering. First, we provide a statistical overview of his exceptional scientific performance using Scopus, Web of Science, and other Web sites to extract statistical data on his scientific publications and patents. Professor Hench achieved an exceptionally high h-index of 77 (Scopus) for the field of materials science and engineering, which resulted from his 340 research papers, 210 conference papers, 41 patents, 24 books, 4 editorial notes, and 3 biographies starting in 1967. Then, we summarize and highlight his seminal articles, books, and patents in several research areas, such as bioactive glasses, optical gel glasses, biocomposites/coatings, glass–ceramics, biophotonics, advanced ceramics, semiconducting and ionic conducting glasses, glass corrosion, and nuclear waste disposal. Prof. Hench not only discovered the first man-made material to form a chemical bond with bone and initiated a whole new field—bioactive glasses and glass–ceramics—but also made several other important scientific discoveries. It is quite clear that he was one of the most influential materials scientists/engineers of all time! We hope that this review is not only useful for all persons interested in materials science and engineering but also encourages students and younger investigators to make use of this accumulated knowledge to design novel materials and discover new applications for glasses and ceramics.

Keywords

Simulated Body Fluid Bioactive Glass Lithium Disilicate Waste Isolation Pilot Plant Advanced Analysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the São Paulo Research Foundation—FAPESP, # 2013/07793-6—for the financial support of this work and for granting a postdoctoral fellowship to Maziar Montazerian (# 2015/13314-9).

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Hench LL (2015) A biography of Bioglass. Imperial College Press, LondonGoogle Scholar
  5. 5.
    Hench LL (2015) Boing-Boing the bionic cat and the Amazon Crisis. Can of Worms Kids Press, LondonGoogle Scholar
  6. 6.
    Hench LL (ed) (2013) An introduction to bioceramics, 2nd edn. Imperial College Press, LondonGoogle Scholar
  7. 7.
    Hench LL (2011) Boing-Boing the bionic cat and the space station. Can of Worms Kids Press, LondonGoogle Scholar
  8. 8.
    Hench LL (2011) Boing-Boing the bionic cat and the Mummy’s revenge. Can of Worms Kids Press, LondonGoogle Scholar
  9. 9.
    Hench LL, Jones JR, Fenn MB (eds) (2011) New materials and technologies for healthcare. Imperial College Press, LondonGoogle Scholar
  10. 10.
    Hench LL, Jones JR (eds) (2005) Biomaterials, artificial organs and tissue engineering. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Hench LL (2004) Boing-Boing the bionic cat and the flying trapeze. Can of Worms Kids Press, LondonGoogle Scholar
  12. 12.
    Hench LL (2004) Boing-Boing the bionic cat and the lion’s claws. Can of Worms Kids Press, LondonGoogle Scholar
  13. 13.
    Polak JM, Hench LL, Kemp P (eds) (2002) Future strategies for tissue & organ replacement. Imperial College Press, LondonGoogle Scholar
  14. 14.
    Hench LL (2002) Science, faith and ethics. Imperial College Press, LondonGoogle Scholar
  15. 15.
    Hench LL (2001) Boing-Boing the bionic cat and the jewel thief. Can of Worms Kids Press, LondonGoogle Scholar
  16. 16.
    Hench LL (2000) Boing-Boing the bionic cat. Can of Worms Kids Press, LondonGoogle Scholar
  17. 17.
    Hench LL (1998) Sol–gel silica: properties, processing and technology transfer. William Andrew, NorwichGoogle Scholar
  18. 18.
    Wilson J, Hench LL, Greenspan D (eds) (1995) Bioceramics, vol 8. Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Wilson J, Hench LL (eds) (1995) Clinical performance of skeletal prostheses. Springer, New YorkGoogle Scholar
  20. 20.
    Hench LL, West JK (eds) (1992) Chemical processing of advanced materials. Wiley-Interscience, HobokenGoogle Scholar
  21. 21.
    Yamamuro T, Hench LL, Wilson J (1990) CRC handbook of bioactive ceramics, vol I. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    Yamamuro T, Hench LL, Wilson J (1990) CRC handbook of bioactive ceramics, vol II. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Hench LL, West JK (1990) Principles of electronic ceramics. Wiley-Interscience, HobokenGoogle Scholar
  24. 24.
    Hench LL, Ulrich DR (eds) (1986) Science of ceramic chemical processing. Wiley-Interscience, HobokenGoogle Scholar
  25. 25.
    Hench LL, Ulrich DR (eds) (1984) Ultrastructure processing of ceramics, glasses, and composites. Wiley-Interscience, HobokenGoogle Scholar
  26. 26.
    Hench LL, Onoda GY (1978) Ceramic processing before firing. Wiley-Interscience, HobokenGoogle Scholar
  27. 27.
    Hench LL, McEldowney BA (1976) Bibliography on ceramics and glass. American Ceramic Society in Columbus, OhioGoogle Scholar
  28. 28.
    Hench LL (1991) Bioceramics—from concept to clinic. J Am Ceram Soc 74(7):1487–1510CrossRefGoogle Scholar
  29. 29.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72CrossRefGoogle Scholar
  30. 30.
    Hench LL (1998) Bioceramics. J Am Ceram Soc 81(7):1705–1727CrossRefGoogle Scholar
  31. 31.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):114–117CrossRefGoogle Scholar
  32. 32.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRefGoogle Scholar
  33. 33.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55(2):151–157CrossRefGoogle Scholar
  34. 34.
    Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226(4675):630–636CrossRefGoogle Scholar
  35. 35.
    Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17(11):967–978CrossRefGoogle Scholar
  36. 36.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465CrossRefGoogle Scholar
  37. 37.
    Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22(6):493–507CrossRefGoogle Scholar
  38. 38.
    Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19(16):1419–1423CrossRefGoogle Scholar
  39. 39.
    Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass ceramic materials to bone and muscle. J Biomed Mater Res 7(3):25–42CrossRefGoogle Scholar
  40. 40.
    Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM (2000) Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67(4):321–329CrossRefGoogle Scholar
  41. 41.
    Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7):964–973CrossRefGoogle Scholar
  42. 42.
    Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater 2(4):231–239CrossRefGoogle Scholar
  43. 43.
    Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non Cryst Solids 292(1–3):115–126CrossRefGoogle Scholar
  44. 44.
    Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698CrossRefGoogle Scholar
  45. 45.
    Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25(11):2039–2046CrossRefGoogle Scholar
  46. 46.
    Peitl O, Latorre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514CrossRefGoogle Scholar
  47. 47.
    Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of Bioglasses. J Biomed Mater Res 15(6):805–817CrossRefGoogle Scholar
  48. 48.
    Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials 23(18):3871–3878CrossRefGoogle Scholar
  49. 49.
    Hench LL (1998) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518CrossRefGoogle Scholar
  50. 50.
    Jones JR, Brauer DS, Hupa L, Greenspan DC (2016) Bioglass and bioactive glasses and their impact on healthcare. Int J Appl Glass Sci. doi: 10.1111/ijag.12252 Google Scholar
  51. 51.
    Hench LL, Clark AE (1970) Reaction mechanisms at bioceramic interfaces. Am Ceram Soc Bull 49(4):481Google Scholar
  52. 52.
    Scott GJ, Clark DE, Hench LL (1970) Quantitative analysis of reaction kinetics using guinier X-Ray cameras. Am Ceram Soc Bull 49(4):388Google Scholar
  53. 53.
    Hench LL, Paschall HF, Paschall M, Mcvey J (1973) Histological responses at Bioglass and Bioglass-ceramic interfaces. Am Ceram Soc Bull 52(4):432Google Scholar
  54. 54.
    Hartwig BA, Loehman RE, Hench LL (1973) Morphology of polypeptide adsorption on ceramic substrates. Am Ceram Soc Bull 52(4):430Google Scholar
  55. 55.
    Hench LL, Paschall HA (1974) Histochemical responses at a biomaterials interface. J Biomed Mater Res 8(3):49–64CrossRefGoogle Scholar
  56. 56.
    Pantano CG, Clark AE, Hench LL (1974) Multilayer corrosion films on Bioglass surfaces. J Am Ceram Soc 57(9):412–413CrossRefGoogle Scholar
  57. 57.
    Housefielg LG, Hench LL (1974) Mechanical strengthening of Bioglass-ceramic system. Am Ceram Soc Bull 53(4):384Google Scholar
  58. 58.
    Clark AE, Pantano CG, Hench LL (1974) Auger spectroscopic analysis of bioceramic surface-reactions. Am Ceram Soc Bull 53(4):384Google Scholar
  59. 59.
    Piotrowski G, Hench LL, Allen WC, Miller GJ (1975) Mechanical studies of bone Bioglass interfacial bond. J Biomed Mater Res 9(4):47–61CrossRefGoogle Scholar
  60. 60.
    Stanley HR, Hench LL, Going R, Bennett C, Chellemi SJ, King C, Ingersoll N, Ethridge E, Kreutziger K (1976) Implantation of natural tooth form Bioglasses in baboons. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 42(3):339–356CrossRefGoogle Scholar
  61. 61.
    Clark AE, Hench LL, Paschall HA (1976) Influence of surface chemistry on implant interface histology—theoretical basis for implant materials selection. J Biomed Mater Res 10(2):161–174CrossRefGoogle Scholar
  62. 62.
    Stanley HR, Hench L, Chellemi J, Going R, Bennett C, King C, Ingersoll N, Ethridge E, Kreutziger K (1976) Implantation of Bioglass ceramics in natural tooth form in baboons. J Dent Res 55:B244–B244CrossRefGoogle Scholar
  63. 63.
    Hench LL, Pantano CG, Buscemi PJ, Greenspan DC (1977) Analysis of Bioglass fixation of hip prostheses. J Biomed Mater Res 11(2):267–282CrossRefGoogle Scholar
  64. 64.
    Hench LL (1977) Surface-chemistry of Bioglass-ceramic implant materials. Abstracts of Papers of the American Chemical Society, vol 173, p 10Google Scholar
  65. 65.
    Karlan MS, Hench LL, Madden M, Ogino M (1978) Bone-bonding bioactive material implant in head and neck—Bioglass. Surg Forum 29:575–577Google Scholar
  66. 66.
    Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence of the formation of calcium-phosphate films on Bioglass. J Biomed Mater Res 14(1):55–64CrossRefGoogle Scholar
  67. 67.
    Ogino M, Hench LL (1980) Formation of calcium-phosphate films on silicate-glasses. J Non Cryst Solids 38–9:673–678CrossRefGoogle Scholar
  68. 68.
    Hench LL (1980) Special report—the interfacial behavior of biomaterials, 1979. J Biomed Mater Res 14(6):803–811CrossRefGoogle Scholar
  69. 69.
    Hench LL; Clark DE (1981) Surface-analysis of ceramics and glasses development and application. Abstracts of Papers of the American Chemical Society 182(41)Google Scholar
  70. 70.
    Karlan MS, Mufson RA, Grizzard MB, Buscemi PA, Hench LL, Goldberg EP (1981) Potentiation of infections by biomaterials—a comparison of 3 materials. Otolaryngol Head Neck Surg 89(4):528–534CrossRefGoogle Scholar
  71. 71.
    Merwin GE, Atkins JS, Wilson J, Hench LL (1982) Comparison of ossicular replacement materials in a mouse ear model. Otolaryngol Head Neck Surg 90(4):461–469CrossRefGoogle Scholar
  72. 72.
    Seitz TL, Noonan KD, Hench LL, Noonan NE (1982) Effect of fibronectin on the adhesion of an established cell-line to a surface reactive biomaterial. J Biomed Mater Res 16(3):195–207CrossRefGoogle Scholar
  73. 73.
    Wilson J, Merwin GE, Hench LL (1985) Machining Bioglass implants. SAMPE J 21(3):6–8Google Scholar
  74. 74.
    Hench LL, Wilson J (1986) Biocompatibility of silicates for medical use. CIBA Foundation Symposia, vol 121, pp 231–246Google Scholar
  75. 75.
    Low SB, Fetner AE, Wilson J, Hench LL (1986) Histological-evaluation of Bioglass particulates in gingival tissue (preliminary-results). J Dent Res 65:347Google Scholar
  76. 76.
    Fetner AE, Low SB, Wilson J, Hench LL (1986) Comparison of various synthetic implant materials for periodontal osseous repair. J Dent Res 65:347Google Scholar
  77. 77.
    Clark AE, Stanley HR, Hall MB, King C, Colaizzi F, Spilman D, Hench LL (1986) Clinical-trials of Bioglass implants for alveolar ridge maintenance. J Dent Res 65:304Google Scholar
  78. 78.
    Fetner AE, Low SB, Wilson J, Hench LL (1987) Histologic evaluation of Bioglass particulates in gingival tissue. J Dent Res 66:298Google Scholar
  79. 79.
    Warren LD, Clark AE, Hench LL (1989) An investigation of Bioglass powders—quality assurance test procedure and test criteria. J Biomed Mater Res Appl Biomater 23(A2):201–209Google Scholar
  80. 80.
    Kim CY, Clark AE, Hench L (1989) Early stages of calcium-phosphate layer formation in Bioglasses. J Non Cryst Solids 113(2–3):195–202CrossRefGoogle Scholar
  81. 81.
    Hench LL, Wilson J (1990) The chemical-processing of silicates for biological applications—a review. In: Zelinski BJJ, Brinker CJ, Clark DE et al. (eds) Better ceramics through chemistry IV. Materials research society symposium proceedings, vol 180, pp 1061–1071Google Scholar
  82. 82.
    Yamamuro T, Takagi H, Gross U, Davies JE, Ricci JL, Hench LL, Pilliar RM, Ducheyne P (1991) Bone bonding behavior of biomaterials with different surface characteristics under load-bearing conditions. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 406–414Google Scholar
  83. 83.
    Brunski JB, Sumner R, Hench LL, Lemons JE, Pilliar RM (1991) Influence of biomechanical factors at the bone-biomaterial interface. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 391–405Google Scholar
  84. 84.
    Niki M, Ito G, Matsuda T, Ogino M, Hench LL, Bonfield W (1991) Comparative push-out data of bioactive and non-bioactive materials of similar rugosity. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 350–356Google Scholar
  85. 85.
    Vanblitterswijk CA, Hesseling SC, Vandenbrink J, Leenders H, Bakker D, Hench LL, Davies JE, Parr J, Lemons JE, Legeros RZ (1991) Polymer reactions resulting in bone bonding—a review of the biocompatibility of polyactive. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 295–307Google Scholar
  86. 86.
    Davies JE, Nagai N, Takeshita N, Smith DC, Lemons JE, Hench LL (1991) Deposition of cement-like matrix on implant materials. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 285–294Google Scholar
  87. 87.
    Goldring SR, Wang JT, Ricci JL, Windeler AS, Hench LL, Sodek J, Lemons JE, Bolander M, Kasemo B (1991) Molecular biological approaches to investigate cell biomaterial interactions. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 241–249Google Scholar
  88. 88.
    Davies JE, Ottensmeyer P, Shen X, Hashimoto M, Peel S, Glowacki T, Caplan A, Ericson LE, Revell P, Vanblitterswijk CA, Gross U, Hench LL, Niznick G, Ricci JL, Sumner R, Tenenbaum H (1991) Early extracellular-matrix synthesis by bone-cells. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 214–228Google Scholar
  89. 89.
    Sodek J, Zhang Q, Goldberg HA, Domenicucci C, Kasugai S, Wrana JL, Shapiro H, Chen J, Gross U, Triffit T, Ricci JL, Legeros RZ, Bolander M, Hench LL (1991) Noncollagenous bone proteins and their role in substrate-induced bioactivity. In: Davies JE (ed) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 97–110Google Scholar
  90. 90.
    Hench LL, Lemons JE, Nancollas GH, Ducheyne P, Peel S, Johnson BR, Brunski JB, Triffitt J, Bonfield W, Pilliar RM (1991) Surface-reaction kinetics and adsorption of biological moieties—a mechanistic approach to tissue attachment. In: Davies JE (eds) Workshop on bone-biomaterial interface, Toronto, Canada, 03–04 Dec 1990, pp 33–48Google Scholar
  91. 91.
    Li RN, Clark AE, Hench LL (1992) Effects of structure and surface-area on bioactive powders by sol–gel process. In: Hench LL, West JK (eds) 5th conference on ultrastructure processing, Orlando, FL, 17–21 Feb 1991 chemical processing of advanced materials, pp 627–633Google Scholar
  92. 92.
    Kim CY, Clark AE, Hench LL (1992) Compositional dependence of calcium-phosphate layer formation in fluoride Bioglasses. J Biomed Mater Res 26(9):1147–1161CrossRefGoogle Scholar
  93. 93.
    Gatti AM, Yamamuro T, Hench LL, Andersson OH (1993) In-vivo reactions in some bioactive glasses and glass-ceramics granules. Cells Mater 3(3):283–291Google Scholar
  94. 94.
    Rehman I, Hench LL, Bonfield W (1993) Comparison of hydroxycarbonate apatite layers on bioactive glasses with human bone. In: Ducheyne P, Christiansen D (eds) 6th international symposium on ceramics in medicine, Philadelphia, PA, Nov 1993, bioceramics, vol 6, pp 123–128Google Scholar
  95. 95.
    Hench LL, West JK (1993) The kinetics of bioactive ceramics. 6. Silica-water–amino acid interactions. In: Ducheyne P, Christiansen D (eds) 6th international symposium on ceramics in medicine, Philadelphia, PA, Nov 1993, bioceramics, vol 6, pp 35–40Google Scholar
  96. 96.
    Filgueiras MR, Latorre G, Hench LL (1993) Solution effects on the surface-reactions of a bioactive glass. J Biomed Mater Res 27(4):445–453CrossRefGoogle Scholar
  97. 97.
    Filgueiras MRT, Latorre G, Hench LL (1993) Solution effects on the surface-reactions of 3 bioactive glass compositions. J Biomed Mater Res 27(12):1485–1493CrossRefGoogle Scholar
  98. 98.
    Pereira MM, Clark AE, Hench LL (1994) Homogeneity and bioactivity of sol–gel derived glasses. J Dent Res 73:276Google Scholar
  99. 99.
    Oonishi H, Kushitani S, Yasukawa E, Kawakami H, Nakata A, Koh S, Hench LL, Wilson J, Tsuji E, Sugihara T (1994) Bone growth into spaces between 45S5 Bioglass granules. In: Andersson OH, Happonen RP, YliUrpo A (eds) 7th international symposium on ceramics in medicine, Turku, Finland, 28–30 July 1994 bioceramics, vol 7, pp 139–144Google Scholar
  100. 100.
    Rehman I, Smith R, Hench LL, Bonfield W (1994) FT-Raman spectroscopic analysis of natural bones and their comparison with bioactive glasses and hydroxyapatite. In: Andersson OH, Happonen RP, YliUrpo A (eds) 7th international symposium on ceramics in medicine. Turku, Finland, 28–30 July 1994 bioceramics, vol 7, pp 79–84Google Scholar
  101. 101.
    Zhong JP, LaTorre GP, Hench LL (1994) The kinetics of bioactive ceramics. 7. Binding of collagen to hydroxyapatite and bioactive glass. In: Andersson OH, Happonen RP, YliUrpo A (eds) 7th international symposium on ceramics in medicine, Turku, Finland, 28–30 July 1994 bioceramics, vol 7, pp 61–66Google Scholar
  102. 102.
    West JK, Hench LL (1994) AM-1 molecular-orbital calculations of silica-alanine-nitrogen interaction. J Biomed Mater Res 28(5):625–633CrossRefGoogle Scholar
  103. 103.
    Rehman I, Hench LL, Bonfield W, Smith R (1994) Analysis of surface-layers on bioactive glasses. Biomaterials 15(10):865–870CrossRefGoogle Scholar
  104. 104.
    Hench LL, West JK (1994) Inorganic pathways for biosynthesis—a molecular-orbital modeling approach. J Vac Sci Technol A Vac Surf Films 12(5):2962–2965CrossRefGoogle Scholar
  105. 105.
    Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78(9):2463–2468CrossRefGoogle Scholar
  106. 106.
    Rehman I, Smith R, Hench LL, Bonfield W (1995) Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J Biomed Mater Res 29(10):1287–1294CrossRefGoogle Scholar
  107. 107.
    Lobel KD, West JK, Hench LL (1996) Molecular orbital model of the diatom frustule: potential for biomimetics. J Mater Sci Lett 15(8):648–650CrossRefGoogle Scholar
  108. 108.
    Lobel KD, West JK, Hench LL (1996) Computational model for protein mediated biomineralization of the diatom frustules. Mar Biol 126(3):353–360CrossRefGoogle Scholar
  109. 109.
    Lobel KD, Hench LL (1996) In-vitro protein interactions with a bioactive gel-glass. J Sol-Gel Sci Technol 7(1–2):69–76CrossRefGoogle Scholar
  110. 110.
    Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J Sol-Gel Sci Technol 7(1–2):59–68CrossRefGoogle Scholar
  111. 111.
    Stanley HR, Hall MB, Clark AE, King CJ, Hench LL, Berte JJ (1997) Using 45S5 Bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. Int J Oral Maxillofac Implants 12(1):95–105Google Scholar
  112. 112.
    Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji EI, Sugihara T (1997) Particulate Bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325CrossRefGoogle Scholar
  113. 113.
    Lobel KD, West JK, Hench LL (1997) Silicon in connective tissue: semi-empirical molecular orbital models. In: Sedel L, Rey C (eds) 10th international symposium on ceramics in medicine, Paris, France, 05–09 Oct 1997 bioceramics, vol 10, pp 557–560Google Scholar
  114. 114.
    Latour RA, West JK, Hench LL, Trembley SD, Tian Y, Lickfield GC, Wheeler AP (1997) Adsorption of l-lysine onto silica glass: a synergistic approach combining molecular modeling with experimental analysis. In: Sedel L, Rey C (eds) 10th international symposium on ceramics in medicine, Paris, France, 05–09 Oct 1997 bioceramics, vol 10, pp 541–544Google Scholar
  115. 115.
    Gatti AM, Hench LL, Monari E, Gonella F, Caccavale F (eds) Test of bioactivity in four different glasses. In: Sedel L, Rey C (eds) 10th international symposium on ceramics in medicine, Paris, France, 05–09 Oct 1997 bioceramics, vol 10, pp 287–290Google Scholar
  116. 116.
    Fujishiro Y, Oonishi H, Hench LL (1997) Quantitative comparison of in vivo bone generation with particulate Bioglass® and hydroxyapatite as a bone graft substitute. In: Sedel L, Rey C (eds) 10th international symposium on ceramics in medicine, Paris, France, 05–09 Oct 1997 bioceramics, vol 10, pp 283–286Google Scholar
  117. 117.
    Salinas AJ, Serret A, Vallet-Regi M, Hench LL (1997) Structure and solvation effects of PO4 3−, HPO4 2−, H2PO4− and H3PO4 from AM1 and PM3. In: Sedel L, Rey C (eds) 10th international symposium on ceramics in medicine, Paris, France, 05–09 Oct 1997 bioceramics, vol 10, pp 245–248Google Scholar
  118. 118.
    Hench LL (1997) Theory of bioactivity: the potential for skeletal regeneration. Anales Quim Int Ed 93(1):S44–S48Google Scholar
  119. 119.
    West JK, Brennan AB, Clark AE, Hench LL (1997) Molecular orbital models of ring expansion mechanisms in the silica-carbon monoxide system. J Biomed Mater Res 36(2):209–215CrossRefGoogle Scholar
  120. 120.
    Hench LL (1997) Sol–gel materials for bioceramic applications. Curr Opin Solid State Mater Sci 2(5):604–610CrossRefGoogle Scholar
  121. 121.
    Fujishiro Y, Hench LL, Oonishi H (1997) Quantitative rates of in vivo bone generation for Bioglass® and hydroxyapatite particles as bone graft substitute. J Mater Sci Mater Med 8(11):649–652CrossRefGoogle Scholar
  122. 122.
    West JK, Latour R, Hench LL (1997) Molecular modeling study of adsorption of poly-l-lysine onto silica glass. J Biomed Mater Res 37(4):585–591CrossRefGoogle Scholar
  123. 123.
    Thompson ID, Hench LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng Part H J Eng Med 212(H2):127–136CrossRefGoogle Scholar
  124. 124.
    Hench LL, Wheeler DL, Greenspan DC (1998) Molecular control of bioactivity in sol–gel glasses. J Sol-Gel Sci Technol 13(1–3):245–250CrossRefGoogle Scholar
  125. 125.
    Thompson I, Chan C, Robinson P, Revell P, Wilson J, Hench LL (1998) Evaluation of Bioglass® 45S5-Dextran as bone graft substitute. J Dent Res 77:989Google Scholar
  126. 126.
    Lobel KD, Hench LL (1998) In vitro adsorption and activity of enzymes on reaction layers of bioactive glass substrates. J Biomed Mater Res 39(4):575–579CrossRefGoogle Scholar
  127. 127.
    West JK, Brennan AB, Clark AE, Zamora M, Hench LL (1998) Cyclic anhydride ring opening reactions: theory and application. J Biomed Mater Res 41(1):8–17CrossRefGoogle Scholar
  128. 128.
    Xynos ID, Hukkanen MVJ, Hench LL, Polak JM (1999) Bioglass 45S5 induces mineralisation in osteoblast cultures in vitro. J Pathol 187:38A–38AGoogle Scholar
  129. 129.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H (1999) Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 44(1):31–43CrossRefGoogle Scholar
  130. 130.
    Hench LL (1999) Bioactive glasses and glass-ceramics. In: Bioceramics. Materials science forum, vol 293, pp 37–63Google Scholar
  131. 131.
    Coleman NJ, Hench LL (2000) A gel-derived mesoporous silica reference material for surface analysis by gas sorption—2. Durability and stability. Ceram Int 26(2):179–186CrossRefGoogle Scholar
  132. 132.
    Coleman NJ, Hench LL (2000) A gel-derived mesoporous silica reference material for surface analysis by gas sorption—1. Textural features. Ceram Int 26(2):171–178CrossRefGoogle Scholar
  133. 133.
    Sepulveda P, Jones JR, Hench LL (2000) Effect of particle size on Bioglass® dissolution. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 629–633Google Scholar
  134. 134.
    Cook R, Fielder E, Watson T, Robinson P, Hench LL (2000) Pore characterisation and interconnectivity studies on bioactive 58S sol–gel glass. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 625–628Google Scholar
  135. 135.
    Bellantone M, Hench LL (2000) Bioactive behaviour of sol–gel derived antibacterial bioactive glass. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 617–620Google Scholar
  136. 136.
    Saravanapavan P, Hench LL (2000) Bioactive sol–gel glasses in the CaO–SiO2 system. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 609–612Google Scholar
  137. 137.
    Bellantone M, Coleman NJ, Hench LL (2000) A novel sol–gel derived bioactive glass featuring antibacterial properties. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 597-600Google Scholar
  138. 138.
    Maroothynaden J, Hench LL (2000) Effect of Bioglass® repeat dosage on mineralisation of embryonic bone ‘in vitro’. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 585–588Google Scholar
  139. 139.
    Hayakawa S, Hench LL (2000) AM1 study on infra-red spectra of silica clusters modified by fluorine. J Non Cryst Solids 262(1–3):264–270CrossRefGoogle Scholar
  140. 140.
    De Diego MA, Coleman NJ, Hench LL (2000) Tensile properties of bioactive fibers for tissue engineering applications. J Biomed Mater Res 53(3):199–203CrossRefGoogle Scholar
  141. 141.
    Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Matsuura M, Kin S, Yamamoto T, Mizokawa S (2000) Quantitative comparison of bone growth behavior in granules of Bioglass®, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51(1):37–46CrossRefGoogle Scholar
  142. 142.
    Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51(3):484–490CrossRefGoogle Scholar
  143. 143.
    Clupper DC, Hench LL (2001) Bioactive response of Ag-doped tape cast Bioglass® 45S5 following heat treatment. J Mater Sci Mater Med 12(10–12):917–921CrossRefGoogle Scholar
  144. 144.
    Xynos ID, Edgar AJ, Ramachandran M, Buttery LDK, Hench LL, Polak JM (2001) Biochemical characterisation and gene expression profiling of human trabecular bone derived osteoblasts. J Pathol 193:31A–31AGoogle Scholar
  145. 145.
    Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO–SiO2 system. J Biomed Mater Res 54(4):608–618CrossRefGoogle Scholar
  146. 146.
    Orefice RL, Hench LL, Clark AE, Brennan AB (2001) Novel sol–gel bioactive fibers. J Biomed Mater Res 55(4):460–467CrossRefGoogle Scholar
  147. 147.
    Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740CrossRefGoogle Scholar
  148. 148.
    Jones JR, Sepulveda P, Hench LL (2001) Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res 58(6):720–726CrossRefGoogle Scholar
  149. 149.
    Jones JR, Sepulveda P, Hench LL (2002) Concentration dependence of bioactive glass dissolution in vitro. In: Brown S, Clarke I, Williams P (eds) 14th international symposium on ceramics in medicine (bioceramics-14), Palm Springs, California, 14–17 Nov 2001, bioceramics 14. Key engineering materials vol 218-2, pp 303–306Google Scholar
  150. 150.
    Jones JR, Sepulveda P, Hench LL (2002) The effect of temperature on the processing and properties of macroporous bioactive glass foams. In: Brown S, Clarke I, Williams P (eds) 14th international symposium on ceramics in medicine (bioceramics-14), Palm Springs, California, 14–17 Nov 2001, bioceramics 14. Key engineering materials, vol 218, no 2, pp 299–302Google Scholar
  151. 151.
    Sepulveda P, Jones JR, Hench LL (2002) Synthesis of sol–gel derived bioactive foams. In: Brown S, Clarke I, Williams P (eds) 14th international symposium on ceramics in medicine (bioceramics-14), Palm Springs, California, 14–17 Nov 2001, bioceramics 14. Key engineering materials, vol 218, no 2, pp 287–290Google Scholar
  152. 152.
    Bielby RC, Saravanapavan P, Polak JM, Hench LL (2002) Study of osteoblast differentiation and proliferation on the surface of binary bioactive gel-glasses. In: Brown S, Clarke I, Williams P (eds) 14th international symposium on ceramics in medicine (bioceramics-14), Palm Springs, California, 14–17 Nov 2001, bioceramics 14. Key engineering materials, vol 218, no 2, pp 269–272Google Scholar
  153. 153.
    Sepulveda P, Jones JR, Hench LL (2002) Bioactive sol–gel foams for tissue repair. J Biomed Mater Res 59(2):340–348CrossRefGoogle Scholar
  154. 154.
    Cook RJ, Watson TF, Robinson PD, Thompson ID, Hench LL (2002) Interconnectivity and pore characterisation studies on new 58 S sol–gel bioactive bone allograft glass. J Dent Res 81:A341–A341Google Scholar
  155. 155.
    Bosetti M, Hench L, Cannas M (2002) Interaction of bioactive glasses with peritoneal macrophages and monocytes in vitro. J Biomed Mater Res 60(1):79–85CrossRefGoogle Scholar
  156. 156.
    Day R, Boccaccini AR, Roether JA, Surey S, Forbes A, Hench LL, Gabe S (2002) The effect of Bioglass® on epithelial cell and fibroblast proliferation and incorporation into a PGA matrix. Gastroenterology 122(4):A373–A373Google Scholar
  157. 157.
    Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46(6):1940–1945CrossRefGoogle Scholar
  158. 158.
    Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311CrossRefGoogle Scholar
  159. 159.
    Lenza RFS, Vasconcelos WL, Jones JR, Hench LL (2002) Surface-modified 3D scaffolds for tissue engineering. J Mater Sci Mater Med 13(9):837–842CrossRefGoogle Scholar
  160. 160.
    Hench LL, Xynos ID, Edgar AJ, Buttery LDK, Polak JM, Zhong JP, Liu XY, Chang J (2002) Gene activating glasses. J Inorg Mater 17(5):897–909Google Scholar
  161. 161.
    Latour RA, Hench LL (2002) A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functionalized surfaces. Biomaterials 23(23):4633–4648CrossRefGoogle Scholar
  162. 162.
    Bosetti M, Zanardi L, Hench L, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res Part A 64A(1):189–195CrossRefGoogle Scholar
  163. 163.
    Tan A, Romanska HM, Lenza R, Jones J, Hench LL, Polak JM, Bishop AE (2003) The effect of 58S bioactive sol–gel derived foams on the growth of murine lung epithelial cells. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 719–723Google Scholar
  164. 164.
    Saravanapavan P, Patel MH, Hench LL (2003) Effect of particle size on the concentration and rate of Ag+ release from antimicrobial SiO2–CaO–P2O5–Ag2O gel-glasses. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 245–248Google Scholar
  165. 165.
    Saravanapavan P, Patel MH, Hench LL (2003) Effect of composition and texture on controlled rate of release of an antibacterial agent from bioactive gel-glasses. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 233–236Google Scholar
  166. 166.
    Saravanapavan P, Hench LL (2003) Dissolution of bioactive gel-glass powders in the SiO2–CaO system. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 213–216Google Scholar
  167. 167.
    Jones JR, Hench LL (2003) Effect of porosity on the mechanical properties of bioactive foam scaffolds. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 209–212Google Scholar
  168. 168.
    Pryce RS, Hench LL (2003) Characterisation of a novel nitric oxide releasing bioactive glass. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 205–208Google Scholar
  169. 169.
    Pryce RS, Hench LL (2003) Dissolution characteristics of bioactive glasses. In: BenNissan B, Sher D, Walsh W (eds) 15th international symposium on ceramics in medicine, Univ Technol, Sydney, Australia, 04–08 Dec 2002, bioceramics 15. Key engineering materials, vol 240, no 2, pp 201–204Google Scholar
  170. 170.
    Clupper DC, Hench LL (2003) Crystallization kinetics of tape cast bioactive glass 45S5. J Non Cryst Solids 318(1–2):43–48CrossRefGoogle Scholar
  171. 171.
    Saravanapavan P, Hench LL (2003) Mesoporous calcium silicate glasses. II. Textural characterisation. J Non Cryst Solids 318(1–2):14–26CrossRefGoogle Scholar
  172. 172.
    Saravanapavan P, Hench LL (2003) Mesoporous calcium silicate glasses. I. Synthesis. J Non Cryst Solids 318(1–2):1–13CrossRefGoogle Scholar
  173. 173.
    Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel-glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2O5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O). J Biomed Mater Res Part A 66A(1):110–119CrossRefGoogle Scholar
  174. 174.
    Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 7(4–5):301–307CrossRefGoogle Scholar
  175. 175.
    Jones JR, Hench LL (2003) Effect of surfactant concentration and composition on the structure and properties of sol–gel-derived bioactive glass foam scaffolds for tissue engineering. J Mater Sci 38(18):3783–3790. doi: 10.1023/A:1025988301542 CrossRefGoogle Scholar
  176. 176.
    Clupper DC, Gough JE, Hall MM, Clare AG, LaCourse WC, Hench LL (2003) In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J Biomed Mater Res Part A 67A(1):285–294CrossRefGoogle Scholar
  177. 177.
    Lenza RFS, Jones JR, Vasconcelos WL, Hench LL (2003) In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res Part A 67A(1):121–129CrossRefGoogle Scholar
  178. 178.
    Shah P, Watson TF, Hench LL, Deb S (2003) A novel bioactive liner. J Dent Res 82:484Google Scholar
  179. 179.
    Pryce RS, Hench LL (2004) Tailoring of bioactive glasses for the release of nitric oxide as an osteogenic stimulus. J Mater Chem 14(14):2303–2310CrossRefGoogle Scholar
  180. 180.
    Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15(4):543–562CrossRefGoogle Scholar
  181. 181.
    Hench LL (2004) Glasses to turn on genes. Glass Sci Technol 77(C7):95–103Google Scholar
  182. 182.
    Shirtliff VJ, Hench LL (2004) Macroporous bioactive glasses. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine. Porto, Portugal, 06–09 Nov 2003, bioceramics, vol 16. Key engineering materials vol 254, no 2, pp 989–992Google Scholar
  183. 183.
    Gough JE, Jones JR, Hench LL (2004) Osteoblast nodule formation and mineralisation on foamed 58S bioactive glass. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 981–984Google Scholar
  184. 184.
    Gough JE, Clupper DC, Hench LL (2004) Osteoblast responses to sintered and tapecast bioactive glass. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp. 813–816Google Scholar
  185. 185.
    Saravanapavan P, Selvakumaran J, Hench LL (2004) Indirect cytotoxicity evaluation of soluble silica, calcium, phosphate silver ions. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 785–788Google Scholar
  186. 186.
    Saravanapavan P, Verrier S, Hench LL (2004) A549 lung carcinoma cells: binary vs. ternary bioactive gel-glasses. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 781–784Google Scholar
  187. 187.
    Pryce RS, Hench LL (2004) Surface modification of 58S bioactive gel-glass with an aminosilane. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003, bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 765–768Google Scholar
  188. 188.
    Hench LL (2004) Stimulation of bone repair by gene activating glasses. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 3–6Google Scholar
  189. 189.
    Saravanapavan P, Gough JE, Jones JR, Hench LL (2004) Antimicrobial macroporous gel-glasses: dissolution and cytotoxicity. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 1087–1090Google Scholar
  190. 190.
    Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL, Polak JM (2004) Binary CaO–SiO2 gel-glasses for biomedical applications. Bio-Med Mater Eng 14(4):467–486Google Scholar
  191. 191.
    Jones JR, Hench LL (2004) Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J Biomed Mater Res Part B 68B(1):36–44CrossRefGoogle Scholar
  192. 192.
    Jones JR, Ahir S, Hench LL (2004) Large-scale production of 3D bioactive glass macroporous scaffolds for tissue engineering. J Sol-Gel Sci Technol 29(3):179–188CrossRefGoogle Scholar
  193. 193.
    Gough JE, Notingher I, Hench LL (2004) Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res Part A 68A(4):640–650CrossRefGoogle Scholar
  194. 194.
    Gough JE, Clupper DC, Hench LL (2004) Osteoblast responses to tape-cast and sintered bioactive glass ceramics. J Biomed Mater Res Part A 69A(4):621–628CrossRefGoogle Scholar
  195. 195.
    Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM (2004) Time- and concentration-dependent effects of dissolution products of 58S sol–gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 10(7–8):1018–1026CrossRefGoogle Scholar
  196. 196.
    Clupper DC, Gough JE, Embanga PM, Notingher I, Hench LL, Hall MM (2004) Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment. J Mater Sci Mater Med 15(7):803–808CrossRefGoogle Scholar
  197. 197.
    Skipper LJ, Sowrey FE, Pickup DM, Fitzgerald V, Rashid R, Drake KO, Lin ZJ, Saravanapavan P, Hench LL, Smith ME, Newport RJ (2004) Structural studies of bioactivity in sol–gel-derived glasses by X-ray spectroscopy. J Biomed Mater Res Part A 70A(2):354–360CrossRefGoogle Scholar
  198. 198.
    Clupper DC, Hench LL, Mecholsky JJ (2004) Strength and toughness of tape cast bioactive glass 45S5 following heat treatment. J Eur Ceram Soc 24(10–11):2929–2934CrossRefGoogle Scholar
  199. 199.
    Atwood RC, Jones JR, Lee PD, Hench LL (2004) Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography. Scripta Mater 51(11):1029–1033CrossRefGoogle Scholar
  200. 200.
    Skipper LJ, Sowrey FE, Pickup DM, Drake KO, Smith ME, Saravanapavan P, Hench LL, Newport RJ (2005) The structure of a bioactive calcia-silica sol–gel glass. J Mater Chem 15(24):2369–2374CrossRefGoogle Scholar
  201. 201.
    Skipper LJ, Sowrey FE, Pickup DM, Newport RJ, Drake KO, Lin ZH, Smith ME, Saravanapavan P, Hench LL (2005) The atomic-scale interaction of bioactive glasses with simulated body fluid. In: MendezVilas A (eds) 1st international meeting on applied physics, Badajoz, Spain, 13–18 Oct 2003 cross-disciplinary applied research in materials science and technology. Materials science forum, vol 480, pp 21–25Google Scholar
  202. 202.
    Jones JR, Milroy GE, Cameron RE, Bonfield W, Hench LL (2005) Using X-ray micro-CT imaging to monitor dissolution of macroporous bioactive glass scaffolds. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004 bioceramics, vol 17. Key engineering materials, vol 284–286, pp 493–496Google Scholar
  203. 203.
    Lohbauer U, Jell G, Saravanapavan P, Jones JR, Hench LL (2005) Antimicrobial treatment of dental osseous defects with silver doped Bioglass: osteoblast cell response. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004 bioceramics, vol 17. Key engineering materials, vol 284–286, pp 435–438Google Scholar
  204. 204.
    Lohbauer U, Jell G, Saravanapavan P, Jones JR, Hench LL (2005) Indirect cytotoxicity evaluation of silver doped bioglass Ag-S70C30 on human primary keratinocytes. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004 bioceramics, vol 17. Key engineering materials, vol 284–286, pp 431–434Google Scholar
  205. 205.
    Bielby RC, Pryce RS, Hench LL, Polak JM (2005) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol–gel glass. Tissue Eng 11(3–4):479–488CrossRefGoogle Scholar
  206. 206.
    Christodoulou I, Buttery LDK, Saravanapavan P, Tai GP, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res Part B Appl Biomater 74B(1):529–537CrossRefGoogle Scholar
  207. 207.
    Pickup DM, Sowrey FE, Skipper LJ, Newport RJ, Gunawidjaja P, Drake KO, Smith ME, Saravanapavan P, Hench LL (2005) The structure of TiO2–SiO2 and CaO–SiO2 sol–gel glasses from neutron diffraction and solid state NMR using isotopic enrichment of titanium, calcium and oxygen. Phys Chem Glasses 46(4):433–438Google Scholar
  208. 208.
    Jones JR, Lee PD, Hench LL (2006) Hierarchical porous materials for tissue engineering. Philos Trans R Soc A Math Phys Eng Sci 364(1838):263–281CrossRefGoogle Scholar
  209. 209.
    Christodoulou L, Buttery LDK, Tai GP, Hench LL, Polak JM (2006) Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res Part B Appl Biomater 77B(2):431–446CrossRefGoogle Scholar
  210. 210.
    Newport RJ, Skipper LJ, Carta D, Pickup DM, Sowrey FE, Smith ME, Saravanapavan P, Hench LL (2006) The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol–gel glass. J Mater Sci Mater Med 17(11):1003–1010CrossRefGoogle Scholar
  211. 211.
    Jones JR, Ehrenfried LM, Saravanapavan P, Hench LL (2006) Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mater Med 17(11):989–996CrossRefGoogle Scholar
  212. 212.
    Ahmad M, Jones JR, Hench LL (2007) Fabricating sol–gel glass monoliths with controlled nanoporosity. Biomed Mater 2(1):6–10CrossRefGoogle Scholar
  213. 213.
    Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL (2007) Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28(9):1653–1663CrossRefGoogle Scholar
  214. 214.
    Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29(7):1257–1265CrossRefGoogle Scholar
  215. 215.
    Orefice R, Hench LL, Brennan A (2009) Evaluation of the interactions between collagen and the surface of a bioactive glass during in vitro test. J Biomed Mater Res Part A 90A(1):114–120CrossRefGoogle Scholar
  216. 216.
    Hench LL, Day DE, Hoeland W, Rheinberger VM (2010) Glass and medicine. Int J Appl Glass Sci 1(1):104–117CrossRefGoogle Scholar
  217. 217.
    Hench LL, Greenspan D (2013) Interactions between bioactive glass and collagen: a review and new perspectives. J Aust Ceram Soc 49(2):1–40Google Scholar
  218. 218.
    Hench LL (2013) Chronology of bioactive glass development and clinical applications. New J Glass Ceram 3(2):67–73CrossRefGoogle Scholar
  219. 219.
    Hench LL, Roki N, Fenn MB (1073) Bioactive glasses: importance of structure and properties in bone regeneration. J Mol Struct 2014:24–30Google Scholar
  220. 220.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15CrossRefGoogle Scholar
  221. 221.
    Miguez-Pacheco V, Greenspan D, Hench LL, Boccaccini AR (2015) Bioactive glasses in soft tissue repair. Am Ceram Soc Bull 94(6):27–31Google Scholar
  222. 222.
    Hench LL (2016) Bioglass: 10 milestones from concept to commerce. J Non Cryst Solids 432:2–8CrossRefGoogle Scholar
  223. 223.
    Hench LL (2015) Opening paper 2015—some comments on Bioglass: four eras of discovery and development. Biomed Glasses 1(2015):1–11Google Scholar
  224. 224.
    Hench LL, Walker MM (1979–1987) Inorganic dental or surgical implant—has surface of silica-rich or silica rich-forming material for bonding to bone tissue (NL 9.10.79), DE2910335-A; NL7902497-A; US4171544-A; GB2020197-A; JP54135496-A; FR2421595-A; CA1117796-A; CA1121616-A; GB2020197-B; DE2954180-A; DE2910335-C; DE2954180-C; JP87047546-BGoogle Scholar
  225. 225.
    Merwin GE, Spilman DB, Hench LL (1986–1990) Middle ear prosthesis—having a disc-like base which becomes encapsulated with a thin layer of collagen after implantation, EP203785-B1; EP203785-A; US4676796-A; ES8707101-A; EP203785-B; DE3674247-GGoogle Scholar
  226. 226.
    Low SB, Fetner AE, Clark AE, Hench LL, Wilsonhenc J, Wilson-Hench J (1986–1998) Periodontal osseous defect repair compsn. Comprising bioactive and biocompatible glass contg. oxide(s) of silicon, calcium, sodium and phosphorus and opt. calcium fluoride, EP206726-A; US4851046-A; EP206726-B; DE3675083-G; EP206726-B2Google Scholar
  227. 227.
    Hench LL, Spilman DB, Hench JW (1988) Prosthetic device comprising bioactive glass compsn.–contg. oxide(s) of silicon, phosphorus, calcium and sodium with partial replacement of calcium oxide by calcium fluoride, US4775646-AGoogle Scholar
  228. 228.
    Walker DR, Hench JW, Ramer M, Hench LL (1991) Injectable glass compsns. For tissue reconstruction, etc., comprising particles of bioactive glass suspended in hyaluronic acid soln., WO9117777-AGoogle Scholar
  229. 229.
    Hench LL, Clark AE, Li R (1991) Alkali-free bioactive glass prepd. using sol–gel process—by mixing alkoxysilane and alkoxyphosphate to form compsn of silica, calcia and phosphorus oxide, which forms hydroxyapatite, WO9117965-A; US5074916-AGoogle Scholar
  230. 230.
    West JK, Hench LL (1996) Polypeptide synthesis—comprises contacting amino acids or peptide(s) with hydrated silica entity, US5486598-AGoogle Scholar
  231. 231.
    Hench LL, LaTorre G, Filho OP, Zanotto E (1997–2003) Bioactive ceramic composition useful in load-bearing prosthetic devices—comprises silicon dioxide, calcium oxide, sodium oxide and phosphorus pentoxide, and forms hydroxy-carbonate apatite layer on implanted surface, WO9741079-A; EP896572-A; WO9741079-A1; AU9730699-A; EP896572-A1; US5981412-A; KR2000065167-A; JP2001526619-W; JP3457680-B2Google Scholar
  232. 232.
    Marotta JS, Latorre G, Batich C, Hench LL (1999–2001) Percutaneous biofixed medical implants, WO9918891-A1; AU9897860-A; US5990380-A; US6299930-B1Google Scholar
  233. 233.
    Bellantone M, Coleman NJ, Hench LL (2000–2011) New silver-containing, sol–gel derived bioactive glass compositions for grafting skin or treating wounds and burns, are particularly useful as bone graft materials, WO200076486-A1; AU200054852-A; EP1196150-A1; US6482444-B1; EP1196150-B1; DE60022197-E; ES2245644-T3; DE60022197-T2; CA2377402-CGoogle Scholar
  234. 234.
    Hench LL, Thompson ID, Cook RJ, Watson TF, Hench L, Thompson I, Cook J, Watson F, Robinson D (2002–2012) Use of bioactive glass as abrasive used in treatment of dental hard tissue, and pulp disorders such as dental caries, pain, tooth wear, discoloration, dentine hyper-sensitivity and dental tissue congenital malformations, WO200278645-A; WO200278645-A1; US2003008263-A1; EP1372574-A1; AU2002251213-A1; EP1372574-B1; DE60204217-E; ES2242851-T3; DE60204225-T2; DE60204217-T2; US7329126-B2; US2008176190-A1; CA2442471-CGoogle Scholar
  235. 235.
    Hench LL, Thompson ID, Cook RJ, Watson TF, Robinson PD (2002–2011) Method and composition for whitening teeth, WO200279108-A; EP1392611-A; WO200279108-A1; EP1392611-A1; AU2002251214-A1; US2004137827-A1; EP1392611-B1; DE60204225-E; ES2242852-T3; US7040960-B2; CA2442492-CGoogle Scholar
  236. 236.
    Hench LL, Polak JM, Xynos ID, Buttery LDK, Maroothynaden J, Buttery LD (2002–2004) New composition for stimulating osteoblast production and for inducing local tissue formation from a progenitor cell, comprises an extract of bioactive glass, WO200204606-A1; AU200180507-A; EP1311656-A1; US2004009598-A1Google Scholar
  237. 237.
    Sepulveda P, Hench LL (2002–2012) Production of foamed bioactive sol–gel involves hydrolyzing reaction mixture comprising metal alkoxides with acidic catalyst, foaming by vigorous agitation with surfactants, aging, drying and thermally stabilizing the sol–gel, WO200296391-A1; EP1395245-A1; AU2002310069-A1; JP2004532685-W; US2004241238-A1; US2011163472-A1; JP4753530-B2; EP1395245-B1Google Scholar
  238. 238.
    Chayen N, Hench LL, Chayen NBS (2004–2009) Crystallization of macromolecules, e.g. proteins, involves the addition of mesoporous glass to crystallization sample, WO2004041847-A1; AU2003283546-A1; EP1565484-A1; US2006154042-A1; US7252713-B2; EP1565484-B1; DE60319868-E; ES2305534-T3; DE60319868-T2Google Scholar
  239. 239.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486CrossRefGoogle Scholar
  240. 240.
    Greenspan DC (2010) NovaMin® and tooth sensitivity—an overview. J Clin Dent 21(3):61–65Google Scholar
  241. 241.
    Greenspan DC (2016) Glass and medicine: the Larry Hench story. Int J Appl Glass Sci 7(2):134–138CrossRefGoogle Scholar
  242. 242.
    Gentleman E, Polak JM (2006) Historic and current strategies in bone tissue engineering: do we have a hope in Hench? J Mater Sci Mater Med 17(11):1029–1035CrossRefGoogle Scholar
  243. 243.
    Woodard KL (1999) Profiles in ceramics: Larry L. Hench—Bioactive glass. Am Ceram Soc Bull 78(9):50–56Google Scholar
  244. 244.
    Prassas M, Phalippou J, Hench LL, Zarzycki J (1982) Preparation of xNa2O–(1 − x)SiO2 gels for the gel-glass process. 1. Atmospheric effect on the structural evolution of the gels. J Non Cryst Solids 48(1):79–95CrossRefGoogle Scholar
  245. 245.
    Hench LL, Prassas M, Phalippou J (1982) Preparation of 33 mol-percent Na2O-67 mol-percent SiO2 glass by gel-glass transformation. J Non Cryst Solids 53(1–2):183–193CrossRefGoogle Scholar
  246. 246.
    Hench LL, Wong SH, Prassas M (1982) Processing and environmental behavior of a 20 mol-percent Na2O-80 mol-percent (20 N) SiO2 gel-glass. Am Ceram Soc Bull 61(11):1192Google Scholar
  247. 247.
    Wang SH, Hench LL (1983) Processing variables of sol–gel-derived (20 N) soda silicates. Am Ceram Soc Bull 62(11):1247Google Scholar
  248. 248.
    Wallace S, Hench LL (1983) Organometallic-derived 20 mol-percent Li2O-80 mol-percent (20L) gel monoliths. Am Ceram Soc Bull 62(11):1247Google Scholar
  249. 249.
    Orcel G, Hench LL (1983) Effect of the use of a drying-control chemical-agent (DCCA) on the crystallization and thermal-behavior of soda silicate and soda borosilicate. Am Ceram Soc Bull 62(11):1247Google Scholar
  250. 250.
    Hench LL, Wang SH, Park SC (1984) SiO2 gel glasses. In: Proceedings of the society of photo-optical instrumentation engineers, vol 505, pp 90–96Google Scholar
  251. 251.
    Prassas M, Phalippou J, Hench LL (1984) Preparation of XNa2O–(1 − X)SiO2 gels for the gel glass process: 2: The gel-glass conversion. J Non Cryst Solids 63(3):375–389CrossRefGoogle Scholar
  252. 252.
    Orcel G, Phalippou J, Hench LL (1985) Processing and properties of XSiO2–(1 − X)Al2O3 gels. Revue Internationale des Hautes Temperatures et des Refractaires 22(3–4):185–190Google Scholar
  253. 253.
    Orcel G, Hench L (1986) Effect of formamide additive on the chemistry of silica sol gels. 1. NMR of silica hydrolysis. J Non Cryst Solids 79(1–2):177–194CrossRefGoogle Scholar
  254. 254.
    Orcel G, Phalippou J, Hench LL (1986) Processing and structural evolution of (XLi2O·(1 − X)Na2O)·Al2O3·2SiO2 gels. J Non Cryst Solids 82(1–3):301–306CrossRefGoogle Scholar
  255. 255.
    Hench LL, Orcel G (1986) Physical-chemical and biochemical factors in silica sol gels. J Non Cryst Solids 82(1–3):1–10CrossRefGoogle Scholar
  256. 256.
    Orcel G, Phalippou J, Hench LL (1986) Structural-changes of silica xerogels during low-temperature dehydration. J Non Cryst Solids 88(1):114–130CrossRefGoogle Scholar
  257. 257.
    Orcel G, Phalippou J, Hench L (1988) Structural evolution at low-temperature of formamide modified silica xerogels. J Non Cryst Solids 104(2–3):170–180CrossRefGoogle Scholar
  258. 258.
    Sivade A, Orcel G, Hench LL, Bouaziz J, Sempere R, Bourret D (1988) Preparation and characterization of monolithic Si–Ce–O gels. J Non Cryst Solids 105(3):232–242CrossRefGoogle Scholar
  259. 259.
    Orcel G, Hench LL, Artaki I, Jonas J, Zerda TW (1988) Effect of formamide additive on the chemistry of silica sol gels. 2. Gel structure. J Non Cryst Solids 105(3):223–231CrossRefGoogle Scholar
  260. 260.
    Hench LL, West JK, Zhu BF, Ochoa R (1990) Gel-silica hybrid optics. In: Mackenzie JD, Ulrich DR (eds) Conference on sol–gel optics, San Diego, CA, 11–13 July 1990, sol–gel optics. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1328, pp 230–240Google Scholar
  261. 261.
    Hench LL, Wang SH (1990) The sol–gel glass transformation of silica. Phase Transitions 24–6(2):785–834CrossRefGoogle Scholar
  262. 262.
    Fosmoe AG, Hench LL (1990) Transpiration cooled porous type-VI silica rocket windows, better ceramics through chemistry IV. In: Zelinski BJJ, Brinker CJ, Clark DE et al (eds) Materials research society symposium proceedings, vol 180, pp 843–848Google Scholar
  263. 263.
    Hench LL, Vasconcelos W (1990) Gel-silica science. Annu Rev Mater Sci 20:269–298CrossRefGoogle Scholar
  264. 264.
    Hench LL, Wilson MJR (1990) Processing of gel silica monoliths for optics—drying behavior of small pore gels. J Non Cryst Solids 121(1–3):234–243CrossRefGoogle Scholar
  265. 265.
    Zerda TW, Vasconcelos WL, Hench LL (1990) A positronium decay analysis of the pore ultrastructure of sintered gel silica monoliths. J Non Cryst Solids 121(1–3):143–146CrossRefGoogle Scholar
  266. 266.
    Vasconcelos WL, Hench LL (1990) Mechanical-properties evolution during sintering of optical sol–gel silica. J Non Cryst Solids 121(1–3):132–135CrossRefGoogle Scholar
  267. 267.
    Vasconcelos WL, Dehoff RT, Hench LL (1990) Structural evolution during sintering of optical sol–gel silica. J Non Cryst Solids 121(1–3):124–127CrossRefGoogle Scholar
  268. 268.
    West JK, Zhu BF, Cheng YC, Hench LL (1990) Quantum-chemistry of sol–gel silica clusters. J Non Cryst Solids 121(1–3):51–55CrossRefGoogle Scholar
  269. 269.
    Hench LL (1991) Sol–gel silica for precision and multifunctional optics. Ceram Int 17(4):209–216CrossRefGoogle Scholar
  270. 270.
    Chia T, Hench LL (1992) Microoptical arrays by laser densification of gel-silica matrices. In: Mackenzie JD (ed) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE) 1758 (1992) 215-226Google Scholar
  271. 271.
    Kunetz J, West JK, Hench LL (1992) GRIN optics with transition-elements in gel-silica matrices. In: Mackenzie JD (ed) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1758, pp 186–192Google Scholar
  272. 272.
    Hench LL, Latorre GP, Donovan S, Marotta J, Valliere E (1992) Properties of gel-silica optical matrices with 4.5 nm and 9.0 nm pores. In: Mackenzie JD (eds) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1758, pp 94–104Google Scholar
  273. 273.
    Liu S; Hench LL (1992) Control of the texture of gel-silica monoliths by aging treatments. In: Mackenzie JD (ed) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July, 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1758, pp 14–25Google Scholar
  274. 274.
    Liu SY, Hench LL (1992) Lasing characteristics of a porous gel silica matrix with 4pypo-mepts laser-dye. In: Mackenzie JD (ed) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1758, pp 953–964Google Scholar
  275. 275.
    Chia TP, West JK, Hench LL (1992) Fabrication of microlenses by laser densification on gel silica glass. In: Mackenzie JD (eds) 2nd conference on sol–gel optics, San Diego, CA, 20–22 July 1992, sol–gel optics II. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 1758, pp 933–939Google Scholar
  276. 276.
    Fosmoe A, Hench LL (1991) Gas-permeability in porous gel silica. In: Hench LL, West JK (eds) 5TH conference on ultrastructure processing, Orlando, FL, 17–21 Feb. Chemical processing of advanced materials, pp 897–905Google Scholar
  277. 277.
    Hench LL (1991) Sol–gel processing of net shape and multifunctional optics. In: Hench LL, West JK (eds) 5TH conference on ultrastructure processing, Orlando, FL, 17–21 Feb. Chemical processing of advanced materials, pp 875–889Google Scholar
  278. 278.
    Kunetz JM, West JK, Hench LL (1991) Restricted diffusion of chromium ions within stabilized sol–gel silica glasses. In: Hench LL, West JK (eds) 5th conference on ultrastructure processing, Orlando, FL, 17–21 Feb. Chemical processing of advanced materials, pp 115–122Google Scholar
  279. 279.
    Wallace S, Hench LL (1991) Structural-analysis of silica-gels during densification using raman-spectroscopy. In: Hench LL, West JK (eds) 5th conference on ultrastructure processing, Orlando, FL, 17–21 Feb. Chemical processing of advanced materials, pp 69–75Google Scholar
  280. 280.
    Hench LL (1993) Gel-silica optics—an update. In: Varshneya AK, Bickford DF, Bihuniak P (eds) 3rd international conference on advances in fusion and processing of glass/Glassman America 92 exposition, New Orleans, LA, 09–12 June 1992. Advances in fusion and processing of glass. Ceramic transactions, vol 29, pp 591–597Google Scholar
  281. 281.
    Wallace S, West JK, Hench LL (1993) Interactions of water with trisiloxane rings.1. Experimental-analysis. J Non Cryst Solids 152(2–3):101–108CrossRefGoogle Scholar
  282. 282.
    West JK, Kunetz JM, Araujo FG, Hench LL (1994) Stability of porous sol–gel silica to water diffusion—experimental and theoretical analysis. In: Mackenzie JD (ed) Sol–gel optics III conference, San Diego, CA, 25–27 July 1994, sol–gel optics III. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 2288, pp 724–732Google Scholar
  283. 283.
    Kunetz J, Bendale R, Hench LL (1994) Investigation of the binding of Cr3+ to polysiloxane structures with semi-empirical molecular orbital models. In: Mackenzie JD (eds) Sol–gel optics III conference, San Diego, CA, 25–27 July 1994, sol–gel optics III. Proceedings of the society of photo-optical instrumentation engineers (SPIE), vol 2288, pp 700–708Google Scholar
  284. 284.
    Wallace S, Hench LL (1994) Structural analysis of water adsorbed in silica gel. J Sol-Gel Sci Technol 1(2):153–168CrossRefGoogle Scholar
  285. 285.
    Araujo FG, Chia T, Hench LL (1994) Laser densification of channel waveguides in gel-silica substrates. J Sol-Gel Sci Technol 2(1–3):729–735CrossRefGoogle Scholar
  286. 286.
    Delabrouille G, Chia T, West JK, Hench LL (1994) Laser densification of medium pore size gel-silica glass. J Sol-Gel Sci Technol 2(1–3):723–728CrossRefGoogle Scholar
  287. 287.
    Hench LL, Araujo FG, West JK, LaTorre GP (1994) Gel-silica optics: theory and application. J Sol-Gel Sci Technol 2(1–3):647–655CrossRefGoogle Scholar
  288. 288.
    Hench LL (1994) Biochemical processing of materials—a review. In: Cheetham AK, Brinker CJ, Mecartney ML et al (eds) 6th symposium on better ceramics through chemistry, at the 1994 MRS spring meeting, San Francisco, CA, 04–08 Apr 1994, better ceramics through chemistry VI. Materials research society symposium proceedings, vol 346, pp 993–1004Google Scholar
  289. 289.
    Chia TP, West JK, Hench LL (1994) A molecular-orbital model of gel-silica IR-spectra. In: Cheetham AK, Brinker CJ, Mecartney ML et al (eds) 6th symposium on better ceramics through chemistry, at the 1994 MRS spring meeting, San Francisco, CA, 04–08 Apr 1994, better ceramics through chemistry VI. Materials research society symposium proceedings, vol 346, pp 727–732Google Scholar
  290. 290.
    Chia T, Hench LL, Qin C, Hsieh CK (1994) Thermal modeling of laser-densified microlenses. Appl Opt 33(16):3486–3492CrossRefGoogle Scholar
  291. 291.
    West JK, Hench LL (1994) Silica fracture. 1. A ring contraction model. J Mater Sci 29(14):3601–3606. doi: 10.1007/BF00357324 CrossRefGoogle Scholar
  292. 292.
    West JK, Hench LL (1994) Silica fracture. 2. A ring-opening model via hydrolysis. J Mater Sci 29(22):5808–5816. doi: 10.1007/BF00366861 CrossRefGoogle Scholar
  293. 293.
    West JK, Hench LL (1995) Silica fracture. 3. Five- and six-fold ring contraction models. J Mater Sci 30(24):6281–6287. doi: 10.1007/BF00369678 CrossRefGoogle Scholar
  294. 294.
    West JK, Hench LL (1994) A PM3 molecular-orbital model of silica rings and their vibrational-spectra. J Non Cryst Solids 180(1):11–16CrossRefGoogle Scholar
  295. 295.
    Hench LL, West JK (1995) Molecular-orbital models of silica. Annu Rev Mater Sci 25:37–68CrossRefGoogle Scholar
  296. 296.
    West JK, Hench LL (1995) Molecular-orbital models of silica rings and their vibrational-spectra. J Am Ceram Soc 78(4):1093–1096CrossRefGoogle Scholar
  297. 297.
    Araujo FG, Latorre GP, Hench LL (1995) structural evolution of a porous type-vi sol–gel silica glass. J Non Cryst Solids 185(1–2):41–48CrossRefGoogle Scholar
  298. 298.
    West JK, LaTorre G, Hench LL (1996) The UV–visible spectrum in porous type VI silica: application and theory. J Non Cryst Solids 195(1–2):45–53CrossRefGoogle Scholar
  299. 299.
    Powers KW, Hench LL (1998) The pentacoordinate species in fluoride catalysis of silica gels. In: Komarneni S, Sakka S, Phule PP et al (eds) International symposium on sol–gel processing at the 100th annual meeting of the American-Ceramic-Society, Cincinnati, OH, 03–06 May 1998. Sol–gel synthesis and processing. Ceramic transactions, vol 95, pp 197–206Google Scholar
  300. 300.
    Powers KW, Hench LL (1998) Fabrication and characterization of sol–gel monoliths with large mesopores. In: Komarneni S, Sakka S, Phule PP et al (eds) International symposium on sol–gel processing at the 100th annual meeting of the American-Ceramic-Society, Cincinnati, OH, 03–06 May 1998. Sol–gel synthesis and processing. Ceramic transactions, vol 95, pp 173–182Google Scholar
  301. 301.
    Kunetz J, Hench L (1998) Restricted diffusion of chromium nitrate salt solutions into porous sol–gel-silica monoliths. J Am Ceram Soc 81(4):877–884CrossRefGoogle Scholar
  302. 302.
    West JK, West DJ, Hench LL (1998) Molecular orbital models of AM1 and PM3 multi-ring silica clusters and their infrared spectra. Phys Chem Glasses 39(5):301–304Google Scholar
  303. 303.
    Hayakawa S, Hench LL (1998) Molecular orbital models of silica clusters modified by fluorine. J Non Cryst Solids 242(2–3):131–140CrossRefGoogle Scholar
  304. 304.
    Nedelec JM, Hench LL (1999) Ab initio molecular orbital calculations on silica rings. J Non Cryst Solids 255(2–3):163–170CrossRefGoogle Scholar
  305. 305.
    Nedelec JM, Hench LL (2000) Effect of basis set and of electronic correlation on ab initio calculations on silica rings. J Non Cryst Solids 277(2–3):106–113CrossRefGoogle Scholar
  306. 306.
    Kinowski C, Bouazaoui M, Bechara R, Hench LL, Nedelec JM, Turrell S (2001) Kinetics of densification of porous silica gels: a structural and textural study. J Non Cryst Solids 291(3):143–152CrossRefGoogle Scholar
  307. 307.
    Kinowski C, Turrell S, Bouazaoui M, Capoen B, Nedelec JM, Hench LL (2004) Raman spectroscopic investigations of the effects of Ag+ and Ce3+ doping on the densification of nanoporous silica xerogels. J Sol-Gel Sci Technol 32(1–3):345–348CrossRefGoogle Scholar
  308. 308.
    Kinowski C, Capoen B, Hench LL, Nedelec JM, Bechara R, Turrell S, Bouazaoui M (2004) Structural and textural study of the effects of metal ions on the densification kinetics of nanoporous silica xerogels. J Non Cryst Solids 345:570–574CrossRefGoogle Scholar
  309. 309.
    Ahmad M, Hench LL (2005) Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens Bioelectron 20(7):1312–1319CrossRefGoogle Scholar
  310. 310.
    Wu YQ, Du J, Choy KL, Hench LL, Guo JK (2005) Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method. Thin Solid Films 472(1–2):150–156CrossRefGoogle Scholar
  311. 311.
    Ahmad M, Chang KP, King TA, Hench LL (2005) A compact fibre-based fluorescence sensor. Sens Actuators A Phys 119(1):84–89CrossRefGoogle Scholar
  312. 312.
    Hench LL, Wang SH (1989) Prodution of sol–gel-derived monoliths—by mixing water, silica precursor, salt and metallic acid to form sol, etc., US4851373-AGoogle Scholar
  313. 313.
    Hench LL, Orcel GF (1989) Mfg. large sol. gel derived silicon, boron and sodium contg. monoliths—by cast sol contg. silicon, boron and silicon oxide(s) and drying control agent, gelling and drying, US4851150-AGoogle Scholar
  314. 314.
    Hench LL, Orcel GF (1989) Silica-contg. ultra-porous gel monolith—prepd. from gelled sol. contg. ammonium hydroxide as electrolyte and formamide as drying control additive, US4849378-AGoogle Scholar
  315. 315.
    Nogues JL, Hench LL, Wang SH (1991) Doped monolith prepd. from stabilised ultra-porous silica sol–gel—by impregnating with soln. of organic or inorganic dopant, drying and sealing surface or densifying, used as optical part or glass laser, US5071674-AGoogle Scholar
  316. 316.
    Hench LL (1992) Mfr. of optical waveguide in pure silica—using controlled localised densification of sol–gel derived silica matrices, US5080962-AGoogle Scholar
  317. 317.
    Hench LL, Park SC (1992) Monolithic composite of silica gel matrix contg. oxide powder—prepd. by gelling and drying silica sol. contg. oxide powder in presence of drying control additive to avoid drying cracks, US5147829-AGoogle Scholar
  318. 318.
    Hench LL, Wang S (1993) Mfg. sol–gel monolith forming blue gel used as filter—by reacting silica precursor, keto-malonic acid and water, US5196382-AGoogle Scholar
  319. 319.
    Hench LL, Simmons JH, Zhu B, Ochoa R (1993) Laser dye impregnated silica sol–gel monoliths—provides high casing efficiency and improved photochemical stability, US5222092-AGoogle Scholar
  320. 320.
    Ochoa R, Zhu B, Hench LL, Simmons JH (1994) Photochemically stable dye laser prodn.—by impregnating porous silica gel–sol monolith with laser dye soln. then drying, US5356667-AGoogle Scholar
  321. 321.
    Hench LL, Araujo FG, Chia T (1997) Producing waveguide channels in silica gel—by scanning gel silica substrate of defined coarse porosity with laser beam to densify to defined value, US5634955-AGoogle Scholar
  322. 322.
    Hench LL (1973) Ceramics, glasses and composites in medicine. Med Instrum 1(2):136–144Google Scholar
  323. 323.
    Greenspan DC, Hench LL (1974) Chemical and mechanical-behavior of Bioglass-AL2O3 composites. Am Ceram Soc Bull 53(4):384Google Scholar
  324. 324.
    Ducheyne P, Hench LL (1982) The processing and static mechanical-properties of metal fiber reinforced Bioglass. J Mater Sci 17(2):595–606. doi: 10.1007/BF00591494 CrossRefGoogle Scholar
  325. 325.
    Gheysen G, Ducheyne P, Hench LL, Demeester P (1983) Bioglass composites—a potential material for dental application. Biomaterials 4(2):81–84CrossRefGoogle Scholar
  326. 326.
    Zamora MP, Arnold JJ, Hench LL, Brennan AB (1995) Bioglass® reinforced dental composites—thermomechanical properties. Abstracts of Papers of The American Chemical Society, vol 209, p 49Google Scholar
  327. 327.
    Orefice RL, West JK, Hench LL, Brennan AB (1996) Thermomechanical analysis of bioactive glass-polysulfone composites. Abstracts of Papers of The American Chemical Society, vol 212, p 361Google Scholar
  328. 328.
    Wang M, Hench LL, Bonfield W (1998) Bioglass® high density polyethylene composite for soft tissue applications: preparation and evaluation. J Biomed Mater Res 42(4):577–586CrossRefGoogle Scholar
  329. 329.
    Orefice RL, Hench LL, Brennan AB (2000) In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase. J Braz Chem Soc 11(1):78–85CrossRefGoogle Scholar
  330. 330.
    Stamboulis A, Hench LL (2000) Bioresorbable polymers: their potential as scaffolds for Bioglass® composites. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000 bioceramics. Key engineering materials, vol 192, no 1, pp 729–732Google Scholar
  331. 331.
    Thompson I, Hench LL (2000) Reaction kinetics of bioactive glass and a resorbable polysaccharide. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000 bioceramics. Key engineering materials, vol 192, no 1, pp 639–642Google Scholar
  332. 332.
    Chan C, Thompson I, Robinson P, Wilson J, Hench L (2002) Evaluation of Bioglass/dextran composite as a bone graft substitute. Int J Oral Maxillofac Surg 31(1):73–77CrossRefGoogle Scholar
  333. 333.
    Stamboulis AG, Boccaccini AR, Hench LL (2002) Novel biodegradable polymer/bioactive glass composites for tissue engineering applications. Adv Eng Mater 4(3):105–109CrossRefGoogle Scholar
  334. 334.
    Stamboulis A, Hench LL, Boccaccini AR (2002) Mechanical properties of biodegradable polymer sutures coated with bioactive glass. J Mater Sci Mater Med 13(9):843–848CrossRefGoogle Scholar
  335. 335.
    Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13(12):1207–1214CrossRefGoogle Scholar
  336. 336.
    Thompson I, Chan C, Robinson PD, Hench LL (2003) Bioactive glass/dextran composite as a bone augmentation material. J Dent Res 82:514CrossRefGoogle Scholar
  337. 337.
    Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR (2004) PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25(15):3013–3021CrossRefGoogle Scholar
  338. 338.
    Tsigkou O, Boccaccini A, Hench LL, Polak JM, Stevens MM (2004) Effect of PDLLA/Bioglass composite films on expression at the mRNA level of collagen type I and bone sialoprotein in fetal osteoblasts. J Pharm Pharmacol 56:S36–S36Google Scholar
  339. 339.
    Wu YQ, Hench LL, Du J, Choy KL, Guo JK (2004) Preparation of hydroxyapatite fibers by electrospinning technique. J Am Ceram Soc 87(10):1988–1991CrossRefGoogle Scholar
  340. 340.
    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25(27):5857–5866CrossRefGoogle Scholar
  341. 341.
    Pereira MM, Al-Saffar N, Selvakumaran J, Hench LL (2005) Cytotoxicity evaluation of bioactive glass-polyvinyl alcohol hybrid foams prepared by the sol–gel method. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 589–592Google Scholar
  342. 342.
    Kasuga T, Maeda H, Jell G, Notingher I, Hench LL (2005) Preparation of vaterite/poly(lactic acid) composites with excellent apatite-forming ability. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 449–452Google Scholar
  343. 343.
    Pereira MM, Nazhat SN, Jones JR, Hench LL (2005) Mechanical behavior of bioactive glass-polyvinyl alcohol hybrid foams obtained by the sol–gel process. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 757–760Google Scholar
  344. 344.
    Pereira MM, Jones JR, Hench LL (2005) Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Adv Appl Ceram 104(1):35–42CrossRefGoogle Scholar
  345. 345.
    Pereira MM, Jones JR, Orefice RL, Hench LL (2005) Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol–gel method. J Mater Sci Mater Med 16(11):1045–1050CrossRefGoogle Scholar
  346. 346.
    Maeda H, Kasuga T, Hench LL (2006) Preparation of poly(lactic acid) hybrid membranes containing silica. In: Nakamura T, Yamashita K, Neo M (eds) 18th international symposium on ceramics in medicine, Kyoto, Japan, 05–08 Dec 2005, bioceramics 18, Pts 1 and 2. Key engineering materials vol 309–311, no 1–2, pp 775–778Google Scholar
  347. 347.
    Maeda H, Kasuga T, Hench LL (2006) Preparation of poly(l-lactic acid)-polysiloxane-calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials 27(8):1216–1222CrossRefGoogle Scholar
  348. 348.
    Kasuga T, Obata A, Maeda H, Hench LL (2007) Preparation of poly(lactic acid) composites containing vaterite for bone repair. In: Chandra T, Tsuzaki K, Militzer M et al (eds) 5th international conference on processing and manufacturing of advanced materials, Vancouver, Canada, 04–08 Jul 2006, THERMEC 2006, Pts 1–5. Materials science forum, vol 539–543, pp 617–622Google Scholar
  349. 349.
    Orefice R, Clark A, West J, Brennan A, Hench L (2007) Processing, properties, and in vitro bioactivity of polysulfone-bioactive glass composites. J Biomed Mater Res Part A 80A(3):565–580CrossRefGoogle Scholar
  350. 350.
    Tsigkou O, Hench LL, Boccaccini AR, Polak JM, Stevens MM (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. J Biomed Mater Res Part A 80A(4):837–851CrossRefGoogle Scholar
  351. 351.
    Orefice R, West J, LaTorre G, Hench L, Brennan A (2010) Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites. Biomacromolecules 11(3):657–665CrossRefGoogle Scholar
  352. 352.
    Ducheyne PLR, Hench LL (1984) Bioglass reinforced with metal fibres—for use in medical or dental implants, US4478904-AGoogle Scholar
  353. 353.
    Bonfield W; Wang M; Hench LL (1997–2003) Bioactive composite for repair of hard and soft tissues—from dispersion of particulate bioactive glass in polyolefin binder, used for prostheses, particularly those in contact with soft tissue, WO9717401-A1; AU9677246-A; US5728753-A; EP859813-A1; CN1207753-A; US5962549-A; JP2000500174-W; EP859813-B1; DE69630389-EGoogle Scholar
  354. 354.
    Hench LL, West JK, Latorre G, Wilson J, Toreki W, Batich C, LaTorre G (1997–2000) Fluid composition adapted for e.g. repair and replacement of hard or soft tissue—comprises homogeneous suspension of bio-active and bio-compatible glass particulate in aqueous solution of dextran or dextran derivative, WO9745070-A1; AU9730755-A; US5840290-A; CN1226149-A; EP961594-A1; JP2000511084-WGoogle Scholar
  355. 355.
    Hench LL, Latorre G, West JK, Wilson J, Toreki W, Batich C (1999–2001) Mouldable bioactive composition for repair, augmentation and regeneration of bone—comprises bioactive particles of glass, glass-ceramics, calcium phosphate and/or calcium apatite and polysaccharide carrier, WO9902107-A1; AU9883874-A; US6051247-A; EP1009333-A1; BR9810693-A; JP2001509419-W; AU736846-BGoogle Scholar
  356. 356.
    Hench LL, West JK, Latorre G, Wilson J, Toreki W, Batich C (2000–2001) An injectable composition comprising a bio-active glass in a dextran suspension, used to repair, replace, reconstruct or reconstruct soft and/or hard tissue in animals, WO200030561-A1; AU200016318-A; US6190684-B1Google Scholar
  357. 357.
    Buscemi P, Chhatre R, Clark DE, Onoda GY, Hench LL (1974) Bioglass coated stainless-steel prostheses. Am Ceram Soc Bull 53(8):611Google Scholar
  358. 358.
    Griss P, Greenspan DC, Heimke G, Krempien B, Buchinger R, Hench LL, Jentschura G (1976) Evaluation of a Bioglass-coated Al2O3 total hip prosthesis in sheep. J Biomed Mater Res 10(4):511–518CrossRefGoogle Scholar
  359. 359.
    Greenspan DC, Hench LL (1976) Chemical and mechanical-behavior of Bioglass-coated alumina. J Biomed Mater Res 10(4):503–509CrossRefGoogle Scholar
  360. 360.
    Greenspan DC, Hench LL (1976) Mechanical-behavior of Bioglass coated alumina. Am Ceram Soc Bull 55(4):409Google Scholar
  361. 361.
    Ritter JE, Greenspan DC, Palmer RA, Hench LL (1979) Use of fracture-mechanics theory in lifetime predictions for alumina and Bioglass-coated alumina. J Biomed Mater Res 13(2):251–263CrossRefGoogle Scholar
  362. 362.
    Ducheyne P, Hench LL, Kagan A, Martens M, Mulier JC (1979) Short-term bonding behavior of Bioglass coatings on metal-substrate. Arch Orthop Trauma Surg 94(3):155–160CrossRefGoogle Scholar
  363. 363.
    Ducheyne P, Hench LL, Kagan A, Martens M, Bursens A, Mulier JC (1980) Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res 14(3):225–237CrossRefGoogle Scholar
  364. 364.
    Ducheyne P, Hench LL, Demeester P (1980) Short-term bonding behavior of Bioglass coatings on metal-substrate. J Biomech 13(9):807–808CrossRefGoogle Scholar
  365. 365.
    Lacefield WR, Hench LL (1986) The bonding of Bioglass to a cobalt-chromium surgical implant alloy. Biomaterials 7(2):104–108CrossRefGoogle Scholar
  366. 366.
    West JK, Gonzales G, Boschi A, Latorre G, Hench LL (1993) Optimization of rapid immersion coating of bioactive glass on 316L stainless-steel. In: Ducheyne P, Christiansen D (eds) 6th international symposium on ceramics in medicine, Philadelphia, PA, Nov 1993 bioceramics, vol 6, pp 405–410Google Scholar
  367. 367.
    Kasuga T, Nogami M, Niinomi M, Hattori T, Hench LL (2005) Enhancing effect of autoclaving on bioactivity of beta-titanium alloy coated with calcium phosphate glass-ceramic. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004 bioceramics, vol 17. Key engineering materials, vol 284–286, pp 243–246Google Scholar
  368. 368.
    Hench LL, Greenspan DC (1978) Coating alumina-based ceramic with biologically active glass—by dipping into glass powder, fusing the glass, fissuring and recoating, FR2378733-A1; GB1581063-A; CH627723-A; AT7800566-AGoogle Scholar
  369. 369.
    Greenspan DC, Hench LL (1978) Dense alumina prosthetic bone implants—coated with biologically active glass, DE2703814Google Scholar
  370. 370.
    Hench LL, Greenspan DC (1978) Coating alumina with biologically active glass—to form cement free artificial prosthesis bone implants and orthopaedic devices, US4103002-AGoogle Scholar
  371. 371.
    Hench LL, Buscemi PJ (1978–1985) Metal-coated biologically active glass—used to make artificial implant useful in orthopaedics and dentistry, BE866323-A; DE2818630-A; NL7804395-A; SE7804881-A; BR7802572-A; DK7801811-A; JP53145394-A; FR2391175-A; ZA7802401-A; US4159358-A; GB1552570-A; US4234972-A; CA1102953-A; DE2818630-C; CH631143-A; JP82041941-B; AT7802968-A; IT1104191-BGoogle Scholar
  372. 372.
    Cook RJ, Hench LL, Watson TF, Thompson ID, Robinson PD (2003) Treatment of metal surface comprises contacting metal surface with bioactive glass using air abrasion system, WO2003080140-A1; AU2003214436-A1Google Scholar
  373. 373.
    Freiman SW, Hench LL (1967) Kinetics of crystallization on Li2O–SiO2 glasses. Am Ceram Soc Bull 46(4):397Google Scholar
  374. 374.
    Kinser DL, Hench LL (1967) Effect of thermal treatment upon dielectric properties and structure of a lithia-silica glass. Am Ceram Soc Bull 46(4):389Google Scholar
  375. 375.
    Kinser DL, Hench LL (1968) Effect of a metastable precipitate on electrical properties of an Li2O–SiO2 glass. J Am Ceram Soc 51(8):445–449CrossRefGoogle Scholar
  376. 376.
    Freiman SW, Hench LL (1968) Kinetics of crystallization in Li2O–SiO2 glasses. J Am Ceram Soc 51(7):382–387CrossRefGoogle Scholar
  377. 377.
    Tuohig WD, Hench LL (1968) Neutron irradiation effects in thermally treated glasses. Am Ceram Soc Bull 47(4):398Google Scholar
  378. 378.
    Gokurath CV, Freiman SW, Hench LL (1968) Analysis of thickness error in transmission microscopy of ceramics. Am Ceram Soc Bull 47(4):398Google Scholar
  379. 379.
    Kinser DL, Hench LL (1969) Electrode polarization in alkali silicate glasses. J Am Ceram Soc 52(12):638–641CrossRefGoogle Scholar
  380. 380.
    Kinser DL, Hench LL (1969) Polarization behavior in binary alkali-silicate glasses. Am Ceram Soc Bull 48(4):444Google Scholar
  381. 381.
    Hench LL, Kinser DL (1969) Dielectric behavior of binary Li2O and Na2O-silicate glasses during initial stages of crystallization. Am Ceram Soc Bull 48(4):444Google Scholar
  382. 382.
    Gokularathnam CV, Freiman SW, Dehoff RT, Hench LL (1969) Thickness error in quantitative transmission microscopy of ceramics. J Am Ceram Soc 52(6):327–331CrossRefGoogle Scholar
  383. 383.
    Tuohig WD, Hench LL (1969) Neutron effects in thermally treated glasses. J Nucl Mater 31(1):86–92CrossRefGoogle Scholar
  384. 384.
    Hench LL, Kinser DL, Freiman SW (1968) Structure and properties of thermally treated binary silicate glasses. Am Ceram Soc Bull 47(4):398Google Scholar
  385. 385.
    Freiman SW, Gould RW, Hench LL (1968) A small angle x-ray scattering study of crystallization in glass. Am Ceram Soc Bull 47(4):398Google Scholar
  386. 386.
    Freiman SW, Hench LL (1969) Further analysis of glass crystallization kinetics. J Am Ceram Soc 52(2):111–112CrossRefGoogle Scholar
  387. 387.
    Freiman SW, Hench LL (1969) Mechanical behavior of partially crystallized Li2O–SiO2 glass-ceramics. Am Ceram Soc Bull 48(4):448Google Scholar
  388. 388.
    Kinser DL, Hench LL (1970) Hot stage transmission electron microscopy of crystallisation in a lithia-silica glass. J Mater Sci 5(5):369–373. doi: 10.1007/BF00549996 CrossRefGoogle Scholar
  389. 389.
    Hench LL, Frieman SW, Kinser DL (1971) Early stages of crystallisation in a Li2O–2SiO2 glass. Phys Chem Glasses 12(2):58–63Google Scholar
  390. 390.
    Freiman SW, Hench LL (1972) Effect of crystallization on mechanical properties of Li2O–SiO2 glass-ceramics. J Am Ceram Soc 55(2):86–90CrossRefGoogle Scholar
  391. 391.
    Hartwig BA, Hench LL (1972) Epitaxy of Poly-l-alanine on l-quartz and a glass-ceramic. J Biomed Mater Res 6(5):413–423CrossRefGoogle Scholar
  392. 392.
    Ohuchi F, Clark DE, Hench LL (1979) Effect of crystallization on the auger-electron signal decay in an Li2O·2SiO2 glass and glass-ceramic. J Am Ceram Soc 62(9–10):500–503CrossRefGoogle Scholar
  393. 393.
    Palmer RA, Lindberg WR, Hench LL (1979) Fatigue properties of Li2O·2SiO2 glass and glass-ceramic. J Am Ceram Soc 62(5–6):319–320CrossRefGoogle Scholar
  394. 394.
    Barrett JM, Clark DE, Hench LL (1979) Durability and strength of Li2O–Al2O3–CaO–SiO2 glass-ceramics. Am Ceram Soc Bull 58(3):378Google Scholar
  395. 395.
    Mccracken WJ, Clark DE, Hench LL (1982) Aqueous durability of lithium disilicate glass-ceramics. Am Ceram Soc Bull 61(11):1218–1223Google Scholar
  396. 396.
    Chen XF, Hench LL, Greenspan D, Zhong J, Zhang X (1998) Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite. Ceram Int 24(5):401–410CrossRefGoogle Scholar
  397. 397.
    Rehman I, Karsh M, Hench LL, Bonfield W (2000) Analysis of apatite layers on glass-ceramic particulate using FTIR and FT-Raman spectroscopy. J Biomed Mater Res 50(2):97–100CrossRefGoogle Scholar
  398. 398.
    Montazerian M, Zanotto ED (2016) History and trends of bioactive glass-ceramics. J Biomed Mater Res Part A 104A(5):1231–1249CrossRefGoogle Scholar
  399. 399.
    Montazerian M, Zanotto ED (2016) Bioactive glass-ceramics: processing, properties and applications. In: Boccaccini AR, Brauer DS, Hupa L (eds) Bioactive glasses: fundamentals, technology and applications. Royal Society of Chemistry, London, pp 27–60CrossRefGoogle Scholar
  400. 400.
    Peitl O, Orefice RL, Hench LL, Brennan AB (2004) Effect of the crystallization of bioactive glass reinforcing agents on the mechanical properties of polymer composites. Mater Sci Eng A Struct Mater Prop Microstruct Process 372(1–2):245–251CrossRefGoogle Scholar
  401. 401.
    Peitl O, Zanotto ED, Serbena FC (2012) Hench, LL; Compositional and microstructural design of highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. Acta Biomater 8(1):321–332CrossRefGoogle Scholar
  402. 402.
    Barrett JM; Clark DE; Hench LL (1980–1989) Glass compsn. for forming glass-ceramic—casting and heat treating glass-ceramic for dental restorations, US4189325-A; GB2041349-A; FR2446262-A; JP55126546-A; DE2949619-A; FR2454298-A; CA1120960-A; GB2041349-B; JP88020779-B; IT1212375-BGoogle Scholar
  403. 403.
    Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED (2016) Biosilicate®—a multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non Cryst Solids 432A(15):90–110CrossRefGoogle Scholar
  404. 404.
    Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425CrossRefGoogle Scholar
  405. 405.
    Notingher I, Verrier S, Romanska H, Bishop AE, Polak JM, Hench LL (2002) In situ characterisation of living cells by Raman spectroscopy. Spectrosc Int J 16(2):43–51CrossRefGoogle Scholar
  406. 406.
    Notingher I, Boccaccini AR, Jones J, Maquet V, Hench LL (2002) Application of Raman microspectroscopy to the characterisation of bioactive materials. Mater Charact 49(3):255–260CrossRefGoogle Scholar
  407. 407.
    Notingher I, Jones JR, Verrier S, Bisson I, Embanga P, Edwards P, Polak JM, Hench LL (2003) Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectrosc Int J 17(2–3):275–288CrossRefGoogle Scholar
  408. 408.
    Notingher I, Verrier S, Haque S, Polak JM, Hench LL (2003) Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells. Biopolymers 72(4):230–240CrossRefGoogle Scholar
  409. 409.
    Notingher I, Gough JE, Hench LL (2004) Study of osteoblasts mineralisation in vitro by Raman micro-spectroscopy. In: Barbosa MA, Monteiro FJ, Correia R et al (eds) 16th international symposium on ceramics in medicine, Porto, Portugal, 06–09 Nov 2003 bioceramics, vol 16. Key engineering materials, vol 254, no 2, pp 769–772Google Scholar
  410. 410.
    Hench LL, Notingher I (2004) Nova Test: a biophotonics system for rapid in vitro toxicity testing. Am Ceram Soc Bull 83(2):9601–9603Google Scholar
  411. 411.
    Hench LL, Notingher I (2004) A biophotonics system for rapid in vitro toxicity testing. Am Ceram Soc Bull 83(2):14–15Google Scholar
  412. 412.
    Verrier S, Notingher I, Polak JM, Hench LL (2004) In situ monitoring of cell death using Raman microspectroscopy. Biopolymers 74(1–2):157–162CrossRefGoogle Scholar
  413. 413.
    Notingher I, Bisson I, Bishop AE, Randle WL, Polak JMP, Hench LL (2004) In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro. Anal Chem 76(11):3185–3193CrossRefGoogle Scholar
  414. 414.
    Notingher L, Bisson I, Polak JM, Hench LL (2004) In situ spectroscopic study of nucleic acids in differentiating embryonic stem cells. Vib Spectrosc 35(1–2):199–203CrossRefGoogle Scholar
  415. 415.
    Notingher I, Jell G, Lohbauer U, Salih V, Hench LL (2004) In situ non-invasive spectral discrimination between bone cell phenotypes used in tissue engineering. J Cell Biochem 92(6):1180–1192CrossRefGoogle Scholar
  416. 416.
    Owen CA, Notingher I, Jell G, Selvakumaran J, Stevens MM, Hench LL (2004) Raman spectroscopy as a tool for preliminary drug testing on human cells. J Pharm Pharmacol 56:S51–S52Google Scholar
  417. 417.
    Notingher I, Selvakumaran J, Hench LL (2004) New detection system for toxic agents based on continuous spectroscopic monitoring of living cells. Biosens Bioelectron 20(4):780–789CrossRefGoogle Scholar
  418. 418.
    Notingher I, Green C, Dyer C, Perkins E, Hopkins N, Lindsay C, Hench LL (2004) Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J R Soc Interface 1(1):79–90CrossRefGoogle Scholar
  419. 419.
    Jones JR, Vats A, Notingher L, Gough JE, Tolley NS, Polak JM, Hench LL (2005) In situ monitoring of chondrocyte response to bioactive scaffolds using Raman spectroscopy. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 623–626Google Scholar
  420. 420.
    Notingher I, Jell G, Notingher PL, Bisson I, Polak JMP, Hench LL (2005) Raman spectroscopy: potential tool for in situ characterization of bone cell differentiation. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 545–548Google Scholar
  421. 421.
    Hench LL, Notingher I (2005) A bio-photonics system for rapid in vitro testing of cells and ceramics. In: Li P, Zhang K, Colwell CW (eds) 17th international symposium on ceramics in medicine, New Orleans, LA, 08–12 Dec 2004, bioceramics, vol 17. Key engineering materials, vol 284–286, pp 531–536Google Scholar
  422. 422.
    Notingher L, Jell G, Notingher PL, Bisson I, Tsigkou O, Polak JM, Stevens MM, Hench LL (2005) Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol Struct 744:179–185CrossRefGoogle Scholar
  423. 423.
    Notingher I, Hench LL (2006) Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro. Expert Rev Med Devices 3(2):215–234CrossRefGoogle Scholar
  424. 424.
    Owen CA, Selvakumaran J, Notingher I, Jell G, Hench LL, Stevens MM (2006) In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. J Cell Biochem 99(1):178–186CrossRefGoogle Scholar
  425. 425.
    Owen CA, Notingher I, Hill R, Stevens M, Hench LL (2006) Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J Mater Sci Mater Med 17(11):1019–1023CrossRefGoogle Scholar
  426. 426.
    Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM (2008) Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res Part A 86A(1):31–40CrossRefGoogle Scholar
  427. 427.
    Hench LL, Notingher I (2004–2006) Eliciting of Raman signal from living cell or living cells, e.g. for detecting changes in cell phenotype, involves irradiating the cell with laser having specified wavelength, WO2004005871-A1; AU2003281292-A1; EP1520157-A1; JP2005532547-W; US2006115804-A1Google Scholar
  428. 428.
    Fenn MB, Xanthopoulos P, Pyrgiotakis G, Grobmyer SR, Pardalos PM, Hench LL (2011) Raman spectroscopy for clinical oncology. Adv Opt Technol. Article ID 213783. doi: 10.1155/2011/213783
  429. 429.
    Hench LL, Russell R (1968) Effect of Cr2O3 vaporization on sintering of MgO. Trans Br Ceram Soc 67(9):377–380Google Scholar
  430. 430.
    Hench LL, Clark DE (1968) A theory of error minimization in X-ray spectrochemical sample preparation. Am Ceram Soc Bull 47(4):411Google Scholar
  431. 431.
    Hench LL (1969) Characterization of ceramics—instrumental techniques. Am Ceram Soc Bull 48(8):824Google Scholar
  432. 432.
    Johnson PF, Gehl SM, Hench LL (1974) Quantitative relations between microstructure and electrical properties of TiO2, UO2 AND Ta2O5. Am Ceram Soc Bull 53(4):347Google Scholar
  433. 433.
    Clark DE, Hench LL, Bates SR (1974) Molybdenum metalizing on beryllia. Am Ceram Soc Bull 53(6):473–477Google Scholar
  434. 434.
    Clark DE, Hench LL, Bates SR (1974) Molybdenum metalizing of BeO substrates. Am Ceram Soc Bull 53(4):337Google Scholar
  435. 435.
    Hench LL, Cason BPJ, Housefie LG, Smith DG (1974) Controlled flocculation of wall tile glaze effluent. Am Ceram Soc Bull 53(12):860–864Google Scholar
  436. 436.
    Scott GJ, Hench LL (1974) Effect of powder compact microstructure on reaction-kinetics. Am Ceram Soc Bull 53(4):315Google Scholar
  437. 437.
    Bottcher JH, Hench LL (1974) Quantitative-analysis of glass phase effects on dielectric properties of dense alumina. Am Ceram Soc Bull 53(4):347Google Scholar
  438. 438.
    Hench LL (1988) Ceramics and the challenge of change. Adv Ceram Mater 3(3):203–206CrossRefGoogle Scholar
  439. 439.
    Ohuchi F, Vaidyanathan PN, Hench LL, Dutta S (1980) Auger-electron spectroscopy analysis of Y2O3-doped Si3N4 grain-boundary. Am Ceram Soc Bull 59(11):1162Google Scholar
  440. 440.
    Vaidyanathan PN, Hench LL, Dutta S (1980) Grain-boundary phase in Y2O3-doped Si3N4. Am Ceram Soc Bull 59(11):1161Google Scholar
  441. 441.
    Bernstein SA, Hench LL, Dutta S (1980) Use of x-ray-emission spectra in analysis of Si3N4 grain-boundaries. Am Ceram Soc Bull 59(11):1161–1162Google Scholar
  442. 442.
    Hench LL, Freiman SW (1981) Investigation of the oxidation of hot-pressed Si3N4 with infrared reflection spectroscopy (IRRS). J Mater Sci 16(10):2767–2773. doi: 10.1007/BF02402840 CrossRefGoogle Scholar
  443. 443.
    Hench LL, Vaidyanathan PN, Dutta S (1982) Analysis of Si3N4 grain-boundary devitrification. Am Ceram Soc Bull 61(11):1195Google Scholar
  444. 444.
    Guha JP, Hench LL (1982) Grain-boundary phases in hot-pressed silicon-nitride containing Y2O3 and CeO2 additives. Am Ceram Soc Bull 61(11):1195Google Scholar
  445. 445.
    Mccracken WJ, Person WB, Hench LL (1985) Polarized infrared reflection spectroscopy of single-crystal lithia-silicates and quartz. J Mater Sci 20(11):3853–3864. doi: 10.1007/BF00552373 CrossRefGoogle Scholar
  446. 446.
    Lee BI, Hench LL (1986) Properties of partially densified SiC/SiO2 gel-matrix composites. Am Ceram Soc Bull 65(11):1477Google Scholar
  447. 447.
    Lee BI, Hench LL (1987) Molecular composites of SiC/SiO2, SiC/Al2O3, and SiC/TiC. Am Ceram Soc Bull 66(10):1482–1485Google Scholar
  448. 448.
    Lee BI, Hench LL (1987) Electrophoretic behavior and surface-reactions of sol–gel derived alumina. Colloids Surf 23(3):211–229CrossRefGoogle Scholar
  449. 449.
    Chia T, Hench LL, Qin C, Hsieh CK (1990) Laser densification modelling, better ceramics through chemistry IV. In: Zelinski BJJ, Brinker CJ, Clark DE et al (eds) Materials research society symposium proceedings, vol 180, pp 819–824Google Scholar
  450. 450.
    West JK, Mecholsky JJ, Hench LL (1999) The application of fractal and quantum geometry to brittle fracture. J Non Cryst Solids 260(1–2):99–108CrossRefGoogle Scholar
  451. 451.
    Wu YQ, Choy KL, Hench LL (2004) Preparation of alpha-alumina platelets by laser scanning. J Am Ceram Soc 87(8):1606–1608CrossRefGoogle Scholar
  452. 452.
    Wu YQ, Choy KL, Hench LL (2005) Laser densification of TiO2 films prepared by aerosol assisted vapour deposition. Appl Surf Sci 247(1–4):378–383CrossRefGoogle Scholar
  453. 453.
    Wu YQ, Du J, Choy KL, Hench LL (2007) Laser densification of alumina powder beds generated using aerosol assisted spray deposition. J Eur Ceram Soc 27(16):4727–4735CrossRefGoogle Scholar
  454. 454.
    Wu YQ, Du J, Choy KL, Hench LL (2007) Fabrication of titanium dioxide ceramics by laser sintering green layers prepared via aerosol assisted spray deposition. Mater Sci Eng A Struct Mater Prop Microstruct Process 454:148–155CrossRefGoogle Scholar
  455. 455.
    Hench LL, Lee BL (1989) Crosslinking of polysilastyrene—by heating with dicumyl peroxide, US4804731-AGoogle Scholar
  456. 456.
    Hench LL, Lee BI (1989) Lightweight composite of silicon carbide in silica—is formed by slurrying silicon carbide particulate in silica sol. casting into e.g. mat and gelling, ageing and drying, US4859525-AGoogle Scholar
  457. 457.
    Hench LL, Karakoti A, Krishna MSB, Reid D, Seal S, Krishna MSB, Hench L, Krishna MS, Read D, Sil S, Reyd D, Moorthy SBH (2009–2015) Manufacture of functionalized aluminosilicate powder for producing structural material, involves functionalizing aluminosilicate powder with liquid reagent and drying powder, WO2009082442-A1; AU2008341102-A1; EP2222611-A1; CA2712575-A1; CN101977868-A; US2011112272-A1; MX2010006298-A1; KR2011069743-A; JP2011523392-W; IN201002042-P2; RU2010130262-A; HK1153998-A0; RU2485065-C2; SG162859-A1; SG162859-B; AU2008341102-B2; IL205996-A; JP5749931-B2; BR200822065-A2; JP2015143191-AGoogle Scholar
  458. 458.
    Seal S, Reid DL, Hench LL (2012) Composition used for scavenging oil from oil–water mixture, comprises functionalized fly ash particles that include bulk portion having functionalized surfaces with reactive groups/materials having hydrophobic groups covalently bound to it, US2012006753-A1; US8318625-B2Google Scholar
  459. 459.
    Seal S, Reid DL, Hench LL (2013) Forming functionalized fly ash particles useful e.g. for scavenging oil from oil–water mixture, comprises contacting fly ash particles with hydroxide compound, and reacting the obtained fly ash particles with organic alcohol or organic acid, US2013040803-A1; US8404609-B2Google Scholar
  460. 460.
    Johnson PF, Nastasi RJ, Hench LL (1973) Ceramic electrodes for use in cortical environment. Am Ceram Soc Bull 52(4):432Google Scholar
  461. 461.
    Johnson PF, Hench LL (1976) An in vitro model for evaluating neural stimulating electrodes. J Biomed Mater Res 10(6):907–928CrossRefGoogle Scholar
  462. 462.
    Johnson PF, Bernstein JJ, Hunter G, Dawson WW, Hench LL (1977) An in vitro and in vivo analysis of anodized tantalum capacitive electrodes—corrosion response, physiology, and histology. J Biomed Mater Res 11(5):637–656CrossRefGoogle Scholar
  463. 463.
    Bernstein JJ, Johnson PF, Hench LL, Hunter G, Dawson WW (1977) Cortical histopathology following stimulation with metallic and carbon electrodes. Brain Behav Evol 14(1–2):126–157Google Scholar
  464. 464.
    Johnson PF, Hench LL (1977) An in vitro analysis of metal-electrodes for use in neural environment. Brain Behav Evol 14(1–2):23–45Google Scholar
  465. 465.
    Hench LL, Jenkins DA (1967) AC conductivity of a glass semiconductor. Phys Status Solidi 20(1):327–330CrossRefGoogle Scholar
  466. 466.
    Hench LL (1967) Compositional effects on AC conductivity of a semiconducting glass. Am Ceram Soc Bull 46(4):462Google Scholar
  467. 467.
    Hench LL, Daughenbaugh GA (1968) Radiation effects in semiconducting glasses. J Nucl Mater 25(1):58–63CrossRefGoogle Scholar
  468. 468.
    Kinser DL, Clark AE, Hench LL (1968) Effects of thermal treatment on electrical properties of a K2PO3–V2O5 semiconducting glass. Am Ceram Soc Bull 47(4):398Google Scholar
  469. 469.
    Schaake HF, Marietta M, Hench LL (1969) Electron transport phenomena in transition metal oxide glasses. Am Ceram Soc Bull 48(4):442Google Scholar
  470. 470.
    Murthy MK, Topping JA, Hench LL (1973) Structure of germanate glasses. Abstracts of Papers of the American Chemical Society AUG26, pp 24–24Google Scholar
  471. 471.
    Gehl SM, Johnson PF, Hench LL (1974) Quantitative microscopy characterization of electronic ceramics. Am Ceram Soc Bull 53(4):347Google Scholar
  472. 472.
    Abe Y, Shimakawa H, Hench LL (1982) Protonic conduction in alkaline-earth meta-phosphate glasses containing water. J Non Cryst Solids 51(3):357–365CrossRefGoogle Scholar
  473. 473.
    Tehrani S, Hench LL, Vanvliet CM, Bosman G (1985) Observation of single-carrier space-charge-limited flow in nitrogen-doped alpha-silicon carbide. 2. Electrical noise. J Appl Phys 58(4):1571–1577CrossRefGoogle Scholar
  474. 474.
    Tehrani S, Kim JS, Hench LL, Vanvliet CM, Bosman G (1985) Observation of single-carrier space-charge-limited flow in nitrogen-doped alpha-silicon carbide. 1. IV characteristics and impedance. J Appl Phys 58(4):1562–1570CrossRefGoogle Scholar
  475. 475.
    Tehrani S, Bosman G, Hench LL, Vanvliet CM (1986) Observation of single carrier space-charge-limited flow in nitrogen-doped alpha-silicon carbide. 3. Computer calculations. J Appl Phys 60(7):2386–2395CrossRefGoogle Scholar
  476. 476.
    Vanvliet CM, Bosman G, Hench LL (1988) New perspectives of silicon-carbide—an overview, with special emphasis on noise and space-charge-limited flow. Annu Rev Mater Sci 18:381–421CrossRefGoogle Scholar
  477. 477.
    Luo MY, Bosman G, Vanderziel A, Hench LL (1988) Theory and experiments of 1/f noise in schottky-barrier diodes operating in the thermionic-emission mode. IEEE Trans Electron Devices 35(8):1351–1356CrossRefGoogle Scholar
  478. 478.
    Abe Y, Hosono H, Ohta Y, Hench LL (1988) Protonic conduction in oxide glasses—simple relations between electrical-conductivity, activation-energy, and the O–H bonding state. Phys Rev B 38(14):10166–10169CrossRefGoogle Scholar
  479. 479.
    Abe Y, Hosono H, Hikichi Y, Hench LL (1990) Protonic conduction in PbO–SiO2 glasses—A quantitative estimation. J Mater Sci Lett 9(12):1443–1444CrossRefGoogle Scholar
  480. 480.
    Kotama M, Nakanishi K, Hosono H, Abe Y, Hench LL (1991) Evidence for protonic conduction in alkali-free phosphate-glasses. J Electrochem Soc 138(10):2928–2930CrossRefGoogle Scholar
  481. 481.
    Abe Y, Hosono H, Akita O, Hench LL (1994) Protonic conduction in phosphate-glasses. J Electrochem Soc 141(6):L64–L65CrossRefGoogle Scholar
  482. 482.
    Abe Y, Li GM, Nogami M, Kasuga T, Hench LL (1996) Superprotonic conductors of glassy zirconium phosphates. J Electrochem Soc 143(1):144–147CrossRefGoogle Scholar
  483. 483.
    Abe Y, Hayashi M, Iwamoto T, Sumi H, Hench LL (2005) Superprotonic conducting phosphate glasses containing water. J Non Cryst Solids 351(24–26):2138–2141CrossRefGoogle Scholar
  484. 484.
    Abe Y, Nishizaki S, Muroi T, Kato Y, Hench LL (2006) Conversion of gypsum into a superprotonic conductor. Mater Res Innovations 10(1):17–20CrossRefGoogle Scholar
  485. 485.
    Hench LL (1969) Humidity effects in electronic substrates. Am Ceram Soc Bull 48(8):803Google Scholar
  486. 486.
    Gokularathnam CV, Gould RW, Hench LL (1971) X-ray diffraction analysis of structural changes in glass. Am Ceram Soc Bull 50(4):414Google Scholar
  487. 487.
    Clark DE, Hench LL (1972) Sample preparation variables in x-ray spectrochemical analysis. Am Ceram Soc Bull 51(4):370Google Scholar
  488. 488.
    Sanders DM, Person WB, Hench LL (1972) New methods for studying glass corrosion kinetics. Appl Spectrosc 26(5):530–536CrossRefGoogle Scholar
  489. 489.
    Sanders DM, Hench LL, Person WB (1972) structure of corroded binary silicate glass surfaces. Am Ceram Soc Bull 51(4):374Google Scholar
  490. 490.
    Sanders DM, Hench LL (1972) Automated techniques for analysis of glass corrosion. Am Ceram Soc Bull 51(4):372Google Scholar
  491. 491.
    Onoda GY, Dove DB, Hench LL (1973) Analysis of glass container coatings by auger-electron spectroscopy. Am Ceram Soc Bull 52(4):379Google Scholar
  492. 492.
    Sanders DM, Hench LL (1973) Structural-analysis of silica-rich film formation on alkali-silicate glasses. Am Ceram Soc Bull 52(4):379Google Scholar
  493. 493.
    Sanders DM, Hench LL (1973) Mechanisms of glass corrosion. J Am Ceram Soc 56(7):373–377CrossRefGoogle Scholar
  494. 494.
    Hench LL, Clark AE, Dilmore MF, Ethridge EC (1973) Corrosion of multicomponent glasses. Am Ceram Soc Bull 52(9):704Google Scholar
  495. 495.
    Sanders DM, Hench LL (1973) Surface-roughness and glass corrosion. Am Ceram Soc Bull 52(9):666–669Google Scholar
  496. 496.
    Sanders DM, Hench LL (1973) Environmental effects on glass corrosion kinetics. Am Ceram Soc Bull 52(9):662Google Scholar
  497. 497.
    Hench LL, Sanders DM, Dilmore MF, Ethridge EC (1973) Structural-analysis of corrosion processes of commercial glasses. Am Ceram Soc Bull 52(4):380Google Scholar
  498. 498.
    Clark AE, Hench LL (1973) Effect of P5+, B3+ and F additions on corrosion of Na2O–CaO–SiO2 glasses. Am Ceram Soc Bull 52(4):379Google Scholar
  499. 499.
    Sanders DM, Person WB, Hench LL (1974) Quantitative-analysis of glass structure with use of infrared reflection spectra. Appl Spectrosc 28(3):247–255CrossRefGoogle Scholar
  500. 500.
    Ethridge EC, Hench LL (1974) Effects of compositional range on alkali-silicate glass corrosion kinetics. Am Ceram Soc Bull 53(4):349Google Scholar
  501. 501.
    Dilmore MF, Hench LL (1974) Corrosion behavior of Li2O–Al2O3–SiO2 glasses. Am Ceram Soc Bull 53(4):349Google Scholar
  502. 502.
    Clark DE, Hench LL, Acree WA (1975) Electron-microprobe analysis of Na2O–CaO–SiO2 glass. J Am Ceram Soc 58(11–1):531–532CrossRefGoogle Scholar
  503. 503.
    Gokularathnam CV, Gould RW, Hench LL (1975) Effect of water on structure of vitreous silica. Phys Chem Glasses 16(1):13–16Google Scholar
  504. 504.
    Hench LL (1975) Characterization of glass corrosion and durability. J Non Cryst Solids 19:27–39CrossRefGoogle Scholar
  505. 505.
    Clark DE, Acree WA, Hench LL (1976) Electron-microprobe analysis of corroded soda-lime-silica glasses. J Am Ceram Soc 59(9–10):463–464CrossRefGoogle Scholar
  506. 506.
    Clark DE, Dilmore MF, Ethridge EC, Hench LL (1976) Aqueous corrosion of soda-silica and soda-lime-silica glass. J Am Ceram Soc 59(1–2):62–65CrossRefGoogle Scholar
  507. 507.
    Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of Bioglass corrosion films. J Am Ceram Soc 59(1–2):37–39CrossRefGoogle Scholar
  508. 508.
    Pantano CG, Hench LL (1977) Cleaning borosilicate glass for biological application. J Test Eval 5(1):66–69CrossRefGoogle Scholar
  509. 509.
    Hench LL (1977) Physical-chemistry of glass surfaces. J Non Cryst Solids 25(1–3):343–369CrossRefGoogle Scholar
  510. 510.
    Clark DE, Ethridge EC, Dilmore MF, Hench LL (1977) Quantitative-analysis of corroded glass using infrared frequency-shifts. Glass Technol 18(4):121–124Google Scholar
  511. 511.
    Ethridge EC, Hench LL (1977) Static corrosion of glass. Am Ceram Soc Bull 56(3):330Google Scholar
  512. 512.
    Ethridge EC, Hench LL (1977) Mechanisms of glass corrosion. Am Ceram Soc Bull 56(3):330Google Scholar
  513. 513.
    Dilmore MF, Hench LL (1977) Role of aluminum ions in glass durability. Am Ceram Soc Bull 56(3):330Google Scholar
  514. 514.
    Dilmore MF, Hench LL (1977) Role of mixed-alkali effect on glass durability. Am Ceram Soc Bull 56(3):330Google Scholar
  515. 515.
    Dilmore MF, Clark DE, Hench LL (1978) Chemical durability of Na2O–K2O–CaO–SiO2 glasses. J Am Ceram Soc 61(9–10):439–443CrossRefGoogle Scholar
  516. 516.
    Hench LL, Clark DE (1978) Physical-chemistry of glass surfaces. J Non Cryst Solids 28(1):83–105CrossRefGoogle Scholar
  517. 517.
    Dilmore MF, Clark DE, Hench LL (1978) Aqueous corrosion of lithia-alumina-silicate glasses. Am Ceram Soc Bull 57(11):1040–1044Google Scholar
  518. 518.
    Palmer RA, Hench LL (1979) Nondestructive evaluation of surface flaws using infrared reflection spectroscopy. Am Ceram Soc Bull 58(3):384Google Scholar
  519. 519.
    Ethridge EC, Clark DE, Hench LL (1979) Effects of glass-surface area to solution volume ratio on glass corrosion. Phys Chem Glasses 20(2):35–40Google Scholar
  520. 520.
    Hench LL, Newton RG, Bernstein S (1979) Use of infrared reflection spectroscopy in analysis of durability of medieval glasses, with some comments on conservation procedures. Glass Technol 20(4):144–148Google Scholar
  521. 521.
    Dilmore MF, Clark DE, Hench LL (1979) Corrosion behavior of lithia disilicate glass in aqueous-solutions of aluminum compounds. Am Ceram Soc Bull 58(11):1111Google Scholar
  522. 522.
    Mccracken WJ, Clark DE, Hench LL (1979) Effects of solution pH on corrosion behavior of Li2O·2SiO2 glass-ceramics. Am Ceram Soc Bull 58(3):382Google Scholar
  523. 523.
    Clark DE, Yenbower EL, Hench LL (1979) Corrosion behavior of a zinc-borosilicate simulated nuclear waste glass. Am Ceram Soc Bull 58(3):324Google Scholar
  524. 524.
    Hench LL (1980) Control of glass surfaces. Am Ceram Soc Bull 59(8):864Google Scholar
  525. 525.
    Chao Y, Clark D, Hench LL (1980) Weathering of Na2O·2SiO2 glass. Am Ceram Soc Bull 59(8):864Google Scholar
  526. 526.
    Hench LL (1982) Glass surfaces—1982. J Phys 43(NC-9):625–636Google Scholar
  527. 527.
    Hench LL, Clark DE (1982) Surface-analysis of glasses. CS symposium series, vol 199, pp 203–229Google Scholar
  528. 528.
    Bendale RD, Hench LL (1995) Molecular-orbital models of strained tetrahedral edge shared active-sites on dehydroxylated silica—an AM1 and PM3 study. Surf Sci 338(1–3):322–328CrossRefGoogle Scholar
  529. 529.
    West JK, Hench LL (1998) The effect of environment on silica fracture: vacuum, carbon monoxide, water and nitrogen. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 77(1):85–113Google Scholar
  530. 530.
    Hench LL, Smith D, Cason B, Housefie LG (1973) Controlled flocculation of tile glaze wastes. Am Ceram Soc Bull 52(4):418Google Scholar
  531. 531.
    Hench LL, Clark DE, Yenbower EL (1979) Approach to long-term prediction of stability of nuclear waste forms. Am Ceram Soc Bull 58(3):319Google Scholar
  532. 532.
    Hench LL (1980) Waste forms—methods of predicting long-term performance of glasses and other alternatives. Bull Am Phys Soc 25(4):499Google Scholar
  533. 533.
    Hench AA, Hench LL (1983) Computer-analysis of nuclear waste glass composition effects on leaching. Nucl Chem Waste Manag 4(3):231–238CrossRefGoogle Scholar
  534. 534.
    Werme LO, Hench LL, Nogues JL, Odelius H, Lodding A (1983) On the pH-dependence of leaching of nuclear waste glasses. J Nucl Mater 116(1):69–77CrossRefGoogle Scholar
  535. 535.
    Hench LL, Clark DE, Campbell J (1984) High-level waste immobilization forms. Nucl Chem Waste Manag 5(2):149–173CrossRefGoogle Scholar
  536. 536.
    Hench LL, Spilman DB, Buonaquisti AD (1984) Rutherford back scattering surface-analysis of nuclear waste glasses after one year burial in Stripa. Nucl Chem Waste Manag 5(1):75–85CrossRefGoogle Scholar
  537. 537.
    Lodding A, Hench LL, Werme L (1984) Nuclear waste glass interfaces after one year burial in Stripa. 2. Glass bentonite. J Nucl Mater 125(3):280–286CrossRefGoogle Scholar
  538. 538.
    Hench LL, Lodding A, Werme L (1984) Nuclear waste glass interfaces after one year burial in Stripa. 1. Glass glass. J Nucl Mater 125(3):273–279CrossRefGoogle Scholar
  539. 539.
    Hench LL, Werme L, Lodding A (1984) Nuclear waste glass interfaces after one year burial in Stripa. 3. Glass granite. J Nucl Mater 126(3):226–233CrossRefGoogle Scholar
  540. 540.
    Hench LL, Wilson MJR (1985) Nuclear waste glass interfaces after one year burial in Stripa. 4. Comparative surface profiles. J Nucl Mater 136(2–3):218–228CrossRefGoogle Scholar
  541. 541.
    Maurer C, Clark DE, Hench LL, Grambow B (1985) Solubility effects on the corrosion of nuclear defense waste glasses. Nucl Chem Waste Manag 5(3):193–201CrossRefGoogle Scholar
  542. 542.
    Zhu BF, Clark DE, Hench LL, Wicks GG (1986) Leaching behavior of nuclear waste glass heterogeneities. J Non Cryst Solids 80(1–3):324–334Google Scholar
  543. 543.
    Hench LL (1986) International collaboration in nuclear waste solidification. Nucl Technol 73(2):188–198Google Scholar
  544. 544.
    Hench LL, Clark DE, Harker AB (1986) Nuclear waste solids. J Mater Sci 21(5):1457–1478. doi: 10.1007/BF01114698 CrossRefGoogle Scholar
  545. 545.
    Namboodri CG; Namboodri SL; Wicks GG; Lodding AR; Hench LL; Clark DE; Newton RG; Surface-analyses of SRS waste glass buried for up to 2 years in limestone in the united-kingdom. In: Wicks GG; Bickford DF; Bunnell LR (eds) 5th international symposium at the 93rd annual meeting of the American Ceramic Society: ceramics in nuclear and hazardous waste management, Cincinnati, OH, 28 Apr–02 May 1991, nuclear waste management IV. Ceramic transactions, vol 23, pp 653–662Google Scholar
  546. 546.
    Hench LL (1975) Prosthetic implant materials. Annu Rev Mater Sci 5:279–300CrossRefGoogle Scholar
  547. 547.
    Hench LL (1979) Future-developments and applications of biomaterials—overview. Biomater Med Devices Artif Organs 7(2):339–350CrossRefGoogle Scholar
  548. 548.
    Hench LL (1980) Biomaterials. Science 208(4446):826–831CrossRefGoogle Scholar
  549. 549.
    Hench LL (1989) Bioceramics and the origin of life. J Biomed Mater Res 23(7):685–703CrossRefGoogle Scholar
  550. 550.
    Hench LL, Wilson J (1991) Bioceramics. MRS Bull 16(9):62–74CrossRefGoogle Scholar
  551. 551.
    Hench LL (1993) Bioceramics—from concept to clinic. Am Ceram Soc Bull 72(4):93–98Google Scholar
  552. 552.
    Hench LL (1994) Bioactive ceramics: theory and clinical applications. In: Andersson OH, Happonen RP, YliUrpo A (eds) 7th international symposium on ceramics in medicine, Turku, Finland, 28–30 July 1994, bioceramics, vol 7, pp 3–14Google Scholar
  553. 553.
    Hench LL (1995) Inorganic biomaterials. In: Interrante LV, Caspar LA, Ellis AB (eds) Symposium on materials chemistry—an emerging discipline, at the 204th National Meeting of the American-Chemical-Society, Washington, DC, 23–28 Aug 1992, materials chemistry: an emerging discipline. Advances in chemistry series, vol 245, pp 523–547Google Scholar
  554. 554.
    Hench LL (1995) Bioactive implants. Chem Ind 14:547–550Google Scholar
  555. 555.
    Hench LL (1996) Life and death: the ultimate phase transformation. Thermochim Acta 280:1–13CrossRefGoogle Scholar
  556. 556.
    Hench LL (1997) Introduction to biomaterials. Anales Quim 93(1):S3–S5Google Scholar
  557. 557.
    Hench LL (1998) Bioceramics, a clinical success. Am Ceram Soc Bull 77(7):67–74Google Scholar
  558. 558.
    Hench LL (1999) Role of inorganic and theoretical chemistry in ceramics: past, present, and future. Br Ceram Trans 98(5):246–250CrossRefGoogle Scholar
  559. 559.
    Hench LL (1999) Medical materials for the next millennium. MRS Bull 24(5):13–19CrossRefGoogle Scholar
  560. 560.
    Ratner BD, Hench LL (1999) Perspectives on biomaterials. Curr Opin Solid State Mater Sci 4(4):379–380CrossRefGoogle Scholar
  561. 561.
    Hench LL (2000) The challenge of orthopaedic materials. Curr Orthop 14(1):7–15CrossRefGoogle Scholar
  562. 562.
    Hench LL (2000) A genetic theory of bioactive materials. In: Giannini S, Moroni A (eds) 13th international symposium on ceramic in medicine/symposium on ceramic materials in orthopaedic surgery: clinical results in the year 2000, Bologna, Italy, 22–26 Nov 2000, bioceramics. Key engineering materials, vol 192, no 1, pp 575–580Google Scholar
  563. 563.
    Hench LL, Polak JM, Xynos ID, Buttery LDK (2000) Bioactive materials to control cell cycle. Mater Res Innovations 3(6):313–323CrossRefGoogle Scholar
  564. 564.
    Jones JR, Hench LL (2001) Materials perspective—Biomedical materials for new millennium: perspective on the future. Mater Sci Technol 17(8):891–900CrossRefGoogle Scholar
  565. 565.
    Hench LL, Xynos ID, Edgar AJ, Buttery LDK, Polak JM (2002) A genetic basis for biomedical materials. In: McLean M (eds) Conference on materials science and engineering, Imperial College Science, Technology and Medicine, London, England, 14–15 May 2001, materials science and engineering: its nucleation and growth, pp 283–296Google Scholar
  566. 566.
    Hench LL (2002) Ceramic engineering design: designing a bionic cat. In: Clark DE, Folz DC, McGee TD (eds) Workshop on designing with engineering ceramics, Cocoa Beach, FL, Jan 2001. Introduction to ceramic engineering design, pp 374–391Google Scholar
  567. 567.
    Cleevely ST, Hench L (2002) Professor Larry Hench—making discoveries in the biomaterials field. Mater World 10(11):12Google Scholar
  568. 568.
    Hench LL, Boccaccini AR, Day RM et al (2003) Third-generation gene-activating biomaterials. In: Chandra T, Torralba JM, Sakai T (eds) 4th international conference on processing and manufacturing of advanced materials, Univ. Carlos III Madrid, Madrid, Spain, 07–11 Jul 2003, Thermec’2003, PTS 1–5. Materials science forum, vol 426, no 4, pp 179–184Google Scholar
  569. 569.
    Hench LL (2003) The role of ceramics in an age of biology. In: Sundar V, Rusin RP, Rutiser CA (eds) Symposium on bioceramics held at the 105th annual meeting of the American-Ceramic-Society, Nashville, TN, 27–30 Apr 2003 bioceramics: materials and applications IV. Ceramic transactions, vol 147, pp 3–12Google Scholar
  570. 570.
    Hench LL (2003) Glass and genes: the 2001 W. E. S. turner memorial lecture. Glass Technol 44(1):1–10Google Scholar
  571. 571.
    Shirtliff VJ, Hench LL (2003) Bioactive materials for tissue engineering, regeneration and repair. J Mater Sci 38(23):4697–4707. doi: 10.1023/A:1027414700111 CrossRefGoogle Scholar
  572. 572.
    Hench LL (2005) Challenges for bioceramics in the 21st century. Am Ceram Soc Bull 84(9):18–21Google Scholar
  573. 573.
    Polak J, Hench L (2005) Gene therapy progress and prospects: in tissue engineering. Gene Ther 12(24):1725–1733CrossRefGoogle Scholar
  574. 574.
    Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. JOM 58(7):77–82CrossRefGoogle Scholar
  575. 575.
    Maroothynaden J, Hench LL (2006) The effect of micro-gravity and bioactive surfaces on the mineralization of bone. JOM 58(7):57–63CrossRefGoogle Scholar
  576. 576.
    Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(4):S379–S391CrossRefGoogle Scholar
  577. 577.
    Hench LL (2011) Glass and glass-ceramic technologies to transform the world. Int J Appl Glass Sci 2(3):162–176CrossRefGoogle Scholar
  578. 578.
    Hench LL (2014) Bio-ceramics for the next 25 years: challenges and opportunities. In: Antoniac I, Cavalu S, Traistaru T (eds) 25th symposium and annual meeting of the international-society-for-ceramics-in-medicine (ISCM), Bucharest, Romania, 07–10 Nov 2013 bioceramics, vol 25. Key engineering materials, vol 587, pp 3–14Google Scholar
  579. 579.
    Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26(2):86CrossRefGoogle Scholar
  580. 580.
    Hench L, Mote D, Sorenson S, Martin R (1973) Researchers on research. Eng Educ 63(4):268–272Google Scholar
  581. 581.
    Pennypacker HS, Hench LL (1997) Making behavioural technology transferable. Behav Anal 20(2):97–108Google Scholar
  582. 582.
    Hench L, Wilson J (1985) The bionic kreidl. J Non Cryst Solids 73(1–3):R13–R16Google Scholar
  583. 583.
    Simmons JH (2016) The professional life of Larry L. Hench—a true renaissance scientist/engineer. J Non Cryst Solids: JNCS 436:58–61CrossRefGoogle Scholar
  584. 584.
    Bonfield W (2006) A tribute to Professor Larry Hench. J Mater Sci Mater Med 17(11):965–966CrossRefGoogle Scholar
  585. 585.
    Schoen HJ, Greenspan DC (2016) In memoriam Larry L. Hench, Ph.D. 1938–2015. J Biomed Mater Res Part A 104(4):819–820CrossRefGoogle Scholar
  586. 586.
    Hench LL (1967) His heart in ceramics. Am Ceram Soc Bull 46(5):A10Google Scholar
  587. 587.
    Hench LL, Uhlmann DR (2000) Obituary—Professor W.D. Kingery. Ceram Int 26(8):797–799Google Scholar
  588. 588.
    Hench LL, Uhlmann DR (2000) W. David Kingery—obituary. Ind Ceram 20(2):131Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Materials Engineering (DEMa), Center for Research, Technology and Education in Vitreous Materials (CeRTEV)Federal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations