Journal of Materials Science

, Volume 52, Issue 9, pp 5449–5461 | Cite as

Polypropylene films with high barrier performance via crystal morphology manipulation

  • Yanhui Chen
  • Haoqing Yang
  • Song Yang
  • Penggang Ren
  • Qiuyu Zhang
  • Zhongming Li
Original Paper


In this work, a simple and cost-effective method is proposed to prepare iPP films with high barrier properties. By adding a very small amount of β-nucleating agent, three types of β-crystal morphologies, namely, β-spherulites, β-transcrystals and β-“flower”-like agglomerates are sequentially obtained in iPP with the increasing processing temperature. Among β-nucleated iPP films, the one with β-“flower”-like agglomerates demonstrates the best water vapor and oxygen barrier performances, whose water permeability coefficient is decreased by 50.3% and oxygen permeability coefficient by 67.5%, compared to pure iPP films. Refined crystals, sufficient connection within the crystallites and lamellae parallel to the gas flow direction in iPP with β-“flower”-like agglomerates may force the gas molecules to take longer and more tortuous pathway, thus resulting in excellent barrier properties. Our work provides a new idea to prepare iPP films with high barrier properties by simply manipulating their crystal morphology.


Barrier Property Crystal Morphology Molding Temperature Barrier Performance Oxygen Transmission Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Nos. 51473135, 51503170, 51573147), the Opening State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. sklpme2015-4-22) and the Fundamental Research Funds for the Central Universities (No. 3102016BJY01). The authors thank Shanghai Synchrotron Radiation Facility (SSRF) for supporting the X-ray measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Korner L, Sonnenfeld A, von Rohr PR (2010) Silicon oxide diffusion barrier coatings on polypropylene. Thin Solid Films 518:4840–4846CrossRefGoogle Scholar
  2. 2.
    Gomez M, Bracho D, Palza H et al (2015) Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO2 nanocomposites. Polym Int 64:1245–1251CrossRefGoogle Scholar
  3. 3.
    Wang FF, Du HN, Liu H et al (2015) The synergistic effects of beta-nucleating agent and ethylene octene copolymer on toughening isotactic polypropylene. Polym Test 45:1–11CrossRefGoogle Scholar
  4. 4.
    Jagadish RS, Raj B, Srinivas P (2009) Chemical modification of polypropylene with diisocyanates for improved gas barrier and mechanical properties. Adv Polym Technol 28:233–245CrossRefGoogle Scholar
  5. 5.
    Faisant JB, Aït-Kadi A, Bousmina M et al (1998) Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 39:533–545CrossRefGoogle Scholar
  6. 6.
    Li LD, Xu WC, Qi YQ et al (2015) Study on the compatibility of ethylene-vinyl acetate copolymer/vermiculite in biaxially oriented polypropylene films. Polym Compos 36:78–87CrossRefGoogle Scholar
  7. 7.
    Xu WC, Li DL, Fu YB et al (2016) Influence of nanovermiculites with a high aspect ratio and stretch orientation on the microstructure of polypropylene films. J Appl Polym Sci 133:42846–42856Google Scholar
  8. 8.
    Li DL, Zhang JY, Xu WC et al (2016) Effect of SiO2/EVA on the mechanical properties, permeability, and residual solvent of polypropylene packaging films. Polym Compos 37:101–107CrossRefGoogle Scholar
  9. 9.
    Cui Y, Kumar S, Rao Kona B et al (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRefGoogle Scholar
  10. 10.
    Rein AR, Ticknor WG (1980) US4233367 AGoogle Scholar
  11. 11.
    Famili A, Marten LF, Nangeroni JF (1994) US5362532 AGoogle Scholar
  12. 12.
    Speer DV, Morgan CR, Roberts WP et al (1996) US5350622 AGoogle Scholar
  13. 13.
    Bowen WE, Murray LJ, Mccarry PM (2000) US6120860 AGoogle Scholar
  14. 14.
    Zhang GJ, Lee PC, Jenkins S et al (2014) The effect of confined spherulite morphology of high-density polyethylene and polypropylene on their gas barrier properties in multilayered film systems. Polymer 55:4521–4530CrossRefGoogle Scholar
  15. 15.
    Tsuji K, Nakaya M, Uedono A et al (2015) Enhancement of the gas barrier property of polypropylene by introducing plasma-treated silane coating with SiOx-modified top-surface. Surf Coat Technol 284:377–383CrossRefGoogle Scholar
  16. 16.
    Inagaki N, Tasaka S, Nakajima T (2000) Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from mixture of tetramethoxysilane and oxygen. J Appl Polym Sci 78:2389–2397CrossRefGoogle Scholar
  17. 17.
    Kim SJ, Song E, Jo K et al (2013) Composite oxygen-barrier coating on a polypropylene food container. Thin Solid Films 540:112–117CrossRefGoogle Scholar
  18. 18.
    Charifou R, Espuche E, Gouanvé F et al (2016) SiOx and SiOxCzHw mono- and multi-layer deposits for improved polymer oxygen and water vapor barrier properties. J Membr Sci 500:245–254CrossRefGoogle Scholar
  19. 19.
    Lee SY, Lee JD, Yang SM (1999) Preparation of silica-based hybrid materials coated on polypropylene film. J Mater Sci 34:1233–1241. doi: 10.1023/A:1004517208507 CrossRefGoogle Scholar
  20. 20.
    Kim D, Kim S (2003) Barrier property and morphology of polypropylene/polyamide blend film. Korean J Chem Eng 20:776–782CrossRefGoogle Scholar
  21. 21.
    Sato H, Yamane K, Hokari Y et al (2011) Compatibilizing and characterization of polypropylene/polyglycolic acid blends by melt extruding process. Kobunshi Ronbunshu 68:631–641CrossRefGoogle Scholar
  22. 22.
    Bai HW, Huang CM, Xiu H et al (2014) Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules 15:1507–1514CrossRefGoogle Scholar
  23. 23.
    Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40:2422–2431CrossRefGoogle Scholar
  24. 24.
    Luo F, Geng C, Wang K et al (2009) New understanding in tuning toughness of beta-polypropylene: the role of beta-nucleated crystalline morphology. Macromolecules 42:9325–9331CrossRefGoogle Scholar
  25. 25.
    Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222CrossRefGoogle Scholar
  26. 26.
    Huang HD, Ren PG, Chen J et al (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci 409:156–163CrossRefGoogle Scholar
  27. 27.
    Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158CrossRefGoogle Scholar
  28. 28.
    Somani RH, Hsiao BS, Nogales A et al (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909CrossRefGoogle Scholar
  29. 29.
    Wang Y, Xu JZ, Chen YH et al (2013) Crystalline structure changes in preoriented metallocene-based isotactic polypropylene upon annealing. J Phys Chem B 117:7113–7122CrossRefGoogle Scholar
  30. 30.
    Minardi A, Boudeulle M, Duval E et al (1997) The effect of the moulding conditions on the semicrystalline structure of polypropylene. Polymer 38:3957–3965CrossRefGoogle Scholar
  31. 31.
    Olley RH, Hosier IL, Bassett DC et al (1999) On morphology of consolidated UHMWPE resin in hip cups. Biomaterials 20:2037–2046CrossRefGoogle Scholar
  32. 32.
    Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar
  33. 33.
    Bai H, Wang Y, Song B et al (2008) Synergistic toughening effects of nucleating agent and ethylene–octene copolymer on polypropylene. J Appl Polym Sci 108:3270–3280CrossRefGoogle Scholar
  34. 34.
    Cao J, Zhao ZY, Du RN et al (2007) Effect of beta nucleating agent on mechanical properties of PP/POE blends. Plast, Rubber Compos 36:320–325CrossRefGoogle Scholar
  35. 35.
    Tang XG, Yang W, Shan GF et al (2007) The beta phase of isotactic polypropylene in TPVs based on PP/EPDM. J Macromol Sci Part B Phys 46:841–852CrossRefGoogle Scholar
  36. 36.
    Mogri Z, Paul DR (2001) Gas sorption and transport in side-chain crystalline and molten poly(octadecyl acrylate). Polymer 42:2531–2542CrossRefGoogle Scholar
  37. 37.
    Qiu J, Xu D, Zhao J et al (2008) New insights into the multiple melting behaviors of the semicrystalline ethylene–hexene copolymer: origins of quintuple melting peaks. J Polym Sci, Part B: Polym Phys 46:2100–2115CrossRefGoogle Scholar
  38. 38.
    Zhou JJ, Liu JG, Yan SK et al (2005) Atomic force microscopy study of the lamellar growth of isotactic polypropylene. Polymer 46:4077–4087CrossRefGoogle Scholar
  39. 39.
    Zhang ZC, Deng L, Lei J et al (2015) Isotactic polypropylene reinforced atactic polypropylene by formation of shish-kebab superstructure. Polymer 78:120–133CrossRefGoogle Scholar
  40. 40.
    Yang ZG, Mai KC (2010) Crystallization and melting behavior of beta-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethylene-vinyl acetate as a compatibilizer. Thermochim Acta 511:152–158CrossRefGoogle Scholar
  41. 41.
    Chen YH, Fang DF, Lei J et al (2015) Shear-induced precursor relaxation-dependent growth dynamics and lamellar orientation of β-crystals in β-nucleated isotactic polypropylene. J Phys Chem B 119:5716–5727CrossRefGoogle Scholar
  42. 42.
    Mao Y, Li X, Burger C et al (2012) Development during stretching and heating of isotactic propylene-1-butylene random copolymer: from unit cells to lamellae. Macromolecules 45:7061–7071CrossRefGoogle Scholar
  43. 43.
    Haeringen DTV, Varga J, Ehrenstein GW et al (2000) Features of the hedritic morphology of β-isotactic polypropylene studied by atomic force microscopy. J Polym Sci, Part B: Polym Phys 38:672–681CrossRefGoogle Scholar
  44. 44.
    Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579. doi: 10.1007/BF00540671 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Faculty of Printing, Packaging Engineering and Digital Media TechnologyXi’an University of TechnologyXi’anChina
  3. 3.College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations