Journal of Materials Science

, Volume 52, Issue 9, pp 5223–5231 | Cite as

Effect of dopant segregation and negative differential mobility on multi-quantum well activation energy

  • D. M. Pedroso
  • T. G. Santos
  • C. A. Delfino
  • G. S. Vieira
  • F. M. Fernandes
  • A. A. Quivy
  • A. Passaro
Original Paper


It is shown that the inclusion of dopant segregation, negative differential mobility and thermal assisted tunnelling to the calculation of dark current activation energy provides a much better fitting to the experimental results than geometrical or Poole–Frenkel models and handles well its voltage asymmetry and nonlinearity. Besides, the transport model obtained is able to fit the current–voltage curves for both bias polarities with almost the same transport parameters. A practical method to estimate the segregation length is discussed. A consequence of this method is a more accurate set of values for the transport parameters of the structure, considering direct and reverse bias.


Apparent Activation Energy Drift Velocity Dark Current Reverse Bias Transport Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. N. M. Abe and Dr. R. Y. Tanaka for computational designing the sample. This work was supported by Financiadora de Estudos e Projetos (FINEP) [Grant Numbers 01.09.0395.00 and 01.011.0087.00]; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant Numbers 559908/2010-5, 310509/2012-2, 310578/2012-4, 403018/2013-7]. D.M.P. and T.G.S. also acknowledge the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Almansour SA, Hassen D (2014) Theoretical study of electronic transmission in resonant tunneling diodes based on GaAs/AlGaAs double barriers under bias voltage. Opt Photonics J 04:39–45. doi: 10.4236/opj.2014.43006 CrossRefGoogle Scholar
  2. 2.
    Jirauschek C, Kubis T (2014) Modeling techniques for quantum cascade lasers. Appl Phys Rev 1:011307. doi: 10.1063/1.4863665 CrossRefGoogle Scholar
  3. 3.
    Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105. doi: 10.1038/nphoton.2007.3 CrossRefGoogle Scholar
  4. 4.
    Giorgetta FR, Baumann E, Graf M et al (2009) Quantum cascade detectors. IEEE J Quantum Electron 45:1039–1052. doi: 10.1109/JQE.2009.2017929 CrossRefGoogle Scholar
  5. 5.
    Schneider H, Liu HC (2007) Quantum well infrared photodetectors. Springer, BerlinGoogle Scholar
  6. 6.
    De Moura Pedroso D, Vieira GS, Passaro A (2017) Modelling of high-temperature dark current in multi-quantum well structures from MWIR to VLWIR. Phys E Low-dimens Syst Nanostructures 86:190–197. doi: 10.1016/j.physe.2016.10.021 CrossRefGoogle Scholar
  7. 7.
    Levine BF (1993) Quantum-well infrared photodetectors. J Appl Phys. doi: 10.1063/1.354252 Google Scholar
  8. 8.
    Aquilanti V, Mundim KC, Elango M et al (2010) Temperature dependence of chemical and biophysical rate processes: Phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498:209–213. doi: 10.1016/j.cplett.2010.08.035 CrossRefGoogle Scholar
  9. 9.
    Ding J, Tsu R (1997) The determination of activation energy in quantum wells. Appl Phys Lett 71:2124. doi: 10.1063/1.119356 CrossRefGoogle Scholar
  10. 10.
    Nutku F, Erol A, Gunes M et al (2012) I–V characterization of a quantum well infrared photodetector with stepped and graded barriers. Superlattices Microstruct 52:585–593. doi: 10.1016/j.spmi.2012.06.010 CrossRefGoogle Scholar
  11. 11.
    Donchev V, Bourgoin JC, Bois P (2002) Dark current through GaAs/AlGaAs multiple quantum wells. Semicond Sci Technol 17:621–624. doi: 10.1088/0268-1242/17/6/321 CrossRefGoogle Scholar
  12. 12.
    Altin E, Hostut M, Ergun Y (2011) Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure. Appl Phys A Mater Sci Process 105:833–839. doi: 10.1007/s00339-011-6634-3 CrossRefGoogle Scholar
  13. 13.
    Blavette D, Duguay S (2016) Investigation of dopant clustering and segregation to defects in semiconductors using atom probe tomography. J Appl Phys 119:181502. doi: 10.1063/1.4948238 CrossRefGoogle Scholar
  14. 14.
    Yurasov DV, Antonov AV, Drozdov MN et al (2015) Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy. J Appl Phys. doi: 10.1063/1.4932665 Google Scholar
  15. 15.
    Yurasov DV, Drozdov MN, Zakharov ND, Novikov AV (2014) Segregation of Sb in SiGe heterostructures grown by molecular beam epitaxy: interdependence of growth conditions and structure parameters. J Cryst Growth 396:66–70. doi: 10.1016/j.jcrysgro.2014.03.042 CrossRefGoogle Scholar
  16. 16.
    Arnold CB, Aziz MJ (2005) Unified kinetic model of dopant segregation during vapor-phase growth. Phys Rev B Condens Matter Mater Phys. doi: 10.1103/PhysRevB.72.195419 Google Scholar
  17. 17.
    Mills AP, Pfeiffer LN, West KW, Magee CW (2000) Mechanisms for Si dopant migration in molecular beam epitaxy AlxGa1 − xAs. J Appl Phys 88:4056. doi: 10.1063/1.1308073 CrossRefGoogle Scholar
  18. 18.
    Liu HC, Wasilewski ZR, Buchanan M, Chu H (1993) Segregation of Si delta doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current-voltage characteristics of intersubband infrared detectors. Appl Phys Lett 63:761–763. doi: 10.1063/1.109900 CrossRefGoogle Scholar
  19. 19.
    Wasilewski ZR, Liu HC, Buchanan M (1994) Studies of Si segregation in GaAs using current–voltage characteristics of quantum well infrared photodetectors. J Vac Sci Technol B Microelectron Nanom Struct 12:1273. doi: 10.1116/1.587020 CrossRefGoogle Scholar
  20. 20.
    Lee CY, Tidrow MZ, Choi KK et al (1994) Activation characteristics of a long wavelength infrared hot-electron transistor. Appl Phys Lett 65:442. doi: 10.1063/1.112327 CrossRefGoogle Scholar
  21. 21.
    Yariv A, Xu Y, Shakouri A et al (1995) Direct measurement of doping density and barrier lowering effect with bias in quantum wells. Electron Lett 31:320–321. doi: 10.1049/el:19950180 CrossRefGoogle Scholar
  22. 22.
    Li N, Fu L, Li N et al (2001) The asymmetry in the characteristics of GaAs/AlGaAs quantum well infrared photodetectors. J Cryst Growth 222:786–790. doi: 10.1016/S0022-0248(00)01003-4 CrossRefGoogle Scholar
  23. 23.
    Tanaka RY, Passaro A, Abe NM, et al. (2013) Computer program for analysis and design of nanostructured semiconductor devices. In: 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference IEEE, pp 1–5Google Scholar
  24. 24.
    Harris JJ, Clegg JB, Beall RB et al (1991) Delta-doping of GaAs and Al0.33Ga0.67As with Sn, Si and Be: a comparative study. J Cryst Growth 111:239–245. doi: 10.1016/0022-0248(91)90978-E CrossRefGoogle Scholar
  25. 25.
    Muraki K, Fukatsu S, Shiraki Y, Ito R (1992) Surface segregation of in atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl Phys Lett 61:557–559. doi: 10.1063/1.107835 CrossRefGoogle Scholar
  26. 26.
    Thibaudeau L, Bois P, Duboz JY (1996) A self-consistent model for quantum well infrared photodetectors. J Appl Phys 79:446. doi: 10.1063/1.362712 CrossRefGoogle Scholar
  27. 27.
    Tan ZY, Guo XG, Cao JC et al (2009) Temperature dependence of current–voltage characteristics of terahertz quantum-well photodetectors. Semicond Sci Technol 24:115014. doi: 10.1088/0268-1242/24/11/115014 CrossRefGoogle Scholar
  28. 28.
    Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89:5815–5875. doi: 10.1063/1.1368156 CrossRefGoogle Scholar
  29. 29.
    Adachi S (2009) Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors. Wiley, SouthhamptonCrossRefGoogle Scholar
  30. 30.
    El-Ela FMA, Mohamed AZ (2011) Temperature and doping dependencies of the transport Properties within GaN and GaAs. J Mod Phys 02:1324–1330. doi: 10.4236/jmp.2011.211164 CrossRefGoogle Scholar
  31. 31.
    Oliveira AF, Rubinger RM, Monteiro H et al (2016) Main scattering mechanisms in InAs/GaAs multi-quantum-well: a new approach by the global optimization method. J Mater Sci 51:1333–1343. doi: 10.1007/s10853-015-9451-9 CrossRefGoogle Scholar
  32. 32.
    Vainshtein SN, Yuferev VS, Kostamovaara JT (2005) Ultrahigh field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor. J Appl Phys. doi: 10.1063/1.1839638 Google Scholar
  33. 33.
    Sibille A, Palmier JF, Wang H et al (1990) Negative differential conductance in GaAs/AlAs superlattices. Appl Phys Lett 56:256–258. doi: 10.1063/1.102821 CrossRefGoogle Scholar
  34. 34.
    Altunöz S, Çelik H, Cankurtaran M (2008) Temperature and electric field dependences of the mobility of electrons in vertical transport in GaAs/Ga1− y Al y As barrier structures containing quantum wells. Cent Eur J Phys 6:479–490. doi: 10.2478/s11534-008-0067-4 Google Scholar
  35. 35.
    Quay R, Moglestue C, Palankovski V, Selberherr S (2000) A temperature dependent model for the saturation velocity in semiconductor materials. Mater Sci Semicond Process 3:149–155. doi: 10.1016/S1369-8001(00)00015-9 CrossRefGoogle Scholar
  36. 36.
    El Mir L, Bourgoin JC (1998) Defect-enhanced electron transport through semiconductor barriers. Phys Status Solidi 207:577–594. doi: 10.1002/(SICI)1521-3951(199806)207:2<577:AID-PSSB577>3.0.CO;2-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • D. M. Pedroso
    • 1
  • T. G. Santos
    • 1
  • C. A. Delfino
    • 2
  • G. S. Vieira
    • 1
    • 2
  • F. M. Fernandes
    • 3
  • A. A. Quivy
    • 4
  • A. Passaro
    • 1
    • 2
  1. 1.Instituto Tecnológico de AeronáuticaITASão José Dos CamposBrazil
  2. 2.Divisão de Física AplicadaInstituto de Estudos Avançados, IEAvSão José Dos CamposBrazil
  3. 3.Centro de Tecnologia e Ciências, Faculdade de EngenhariaUniversidade Estadual do Rio de JaneiroMaracanã, Rio de JaneiroBrazil
  4. 4.Instituto de Física da Universidade de São PauloLaboratório de Novos Materiais Semicondutores (LNMS)São PauloBrazil

Personalised recommendations