Journal of Materials Science

, Volume 51, Issue 15, pp 7179–7185 | Cite as

Structural, optical, and electrical properties of low-concentration Ga-doped CdO thin films by pulsed laser deposition

  • Enzhu Li
  • Huixian Zhuo
  • Hongcai He
  • Ning Wang
  • Tao Liu
Original Paper


CdO thin films with low Ga doping concentrations were deposited on low-cost glass substrates by pulsed laser deposition. The influence of Ga doping concentration on structural, electrical, and optical properties of CdO thin films was studied. The Ga-doped CdO thin films show decreasing plasma wavelength and resistivity when increasing doping concentration, and the widening optical gap varies from 2.49 to 2.85 eV with the Ga doping concentration increasing from 0.2 to 1.2 at% due to Moss–Burstein effect. When Ga doping concentration in CdO thin films was controlled at low level from 0.6 to 1.0 at%, the films achieved both high conductivity (~10−4 Ω·cm) and high transmittance up to the infrared region (>1600 nm), which demonstrates good potential as an ideal transparent conductor of full-spectrum photovoltaic devices.


Pulse Laser Deposition Rutherford Backscattering Spectrometry Moss Effect Plasma Wavelength Atomic Force Microscopy Surface Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Kin Man Yu from Lawrence Berkeley National Laboratory for his contributions to this work. This work was supported by Natural Science Foundation of China (51472043, 51272035 and 51272037), China-Japan International Cooperation Program Funds (No. 2010DFA61410 and 2011DFA50530), and the Fundamental Research Funds for the Central Universities (No. ZYGX2014J023).


  1. 1.
    Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mat Sol C 91:1529CrossRefGoogle Scholar
  2. 2.
    Kumar MMD, Yun J-H, Kim J (2014) Metal/semiconductor and transparent conductor/semiconductor heterojunctions in high efficient photoelectric devices: progress and features. Int J Photoenergy 2014:160379CrossRefGoogle Scholar
  3. 3.
    Ginley DS, Hosono H, Paine DC (2011) Handbook of transparent conductors. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Luka G, Witkowski BS, Wachnicki L, Goscinski K, Jakiela R, Guziewicz E, Godlewski M, Zielony E, Bieganski P, Placzek-Popko E, Lisowski W, Sobczak JW, Jablonski A (2013) Atomic layer deposition of Zn1−xMgxO: Al transparent conducting films. J Mater Sci 49:1512CrossRefGoogle Scholar
  5. 5.
    Subba Ramaiah K, Sundara Raja V (2006) Structural and electrical properties of fluorine doped tin oxide films prepared by spray-pyrolysis technique. Appl Surf Sci 253:1451CrossRefGoogle Scholar
  6. 6.
    Bisht H, Eun HT, Mehrtens A, Aegerter MA (1999) Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates. Thin Solid Films 351:109CrossRefGoogle Scholar
  7. 7.
    King RR, Law DC, Edmondson KM, Fetzer CM, Kinsey GS, Yoon H, Sherif RA, Karam NH (2007) 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett 90:183516CrossRefGoogle Scholar
  8. 8.
    Gessert TA, Burst J, Li X, Scott M, Coutts TJ (2011) Advantages of transparent conducting oxide thin films with controlled permittivity for thin film photovoltaic solar cells. Thin Solid Films 519:7146CrossRefGoogle Scholar
  9. 9.
    Peelaers H, Kioupakis E, Van de Walle CG (2012) Fundamental limits on optical transparency of transparent conducting oxides: free-carrier absorption in SnO2. Appl Phys Lett 100:011914CrossRefGoogle Scholar
  10. 10.
    Walukiewicz W, Lagowski L, Jastrzebski L, Lichtensteiger M, Gatos HC (1979) Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio. J Appl Phys 50:899CrossRefGoogle Scholar
  11. 11.
    Yang Y, Jin S, Medvedeva JE, Ireland JR, Metz AW, Ni J, Hersam MC, Freeman AJ, Marks TJ (2005) CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. J Am Chem Soc 127:8796CrossRefGoogle Scholar
  12. 12.
    Jin S, Yang Y, Medvedeva JE, Wang L, Li S, Cortes N, Ireland JR, Metz AW, Ni J, Hersam MC, Freeman AJ, Marks TJ (2008) Tuning the properties of transparent oxide conductors. Dopant ion size and electronic structure effects on CdO-based transparent conducting oxides. Ga- and In-Doped CdO thin films grown by MOCVD. Chem Mater 20:220CrossRefGoogle Scholar
  13. 13.
    Deokate RJ, Salunkhe SV, Agawane GL, Pawar BS, Pawar SM, Rajpure KY, Moholkar AV, Kim JH (2010) Structural, optical and electrical properties of chemically sprayed nanosized gallium doped CdO thin films. J Alloy Compd 496:357CrossRefGoogle Scholar
  14. 14.
    Dakhel AA (2008) Correlated transport and optical phenomena in Ga-doped CdO films. Sol Energy 82:513CrossRefGoogle Scholar
  15. 15.
    Dakhel AA (2011) Structural, optical and electrical measurements on boron-doped CdO thin films. J Mater Sci 46:6925CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Mendelsberg RJ, Zhu J, Han J, Anders A (2013) Structural, optical, and electrical properties of indium-doped cadmium oxide films prepared by pulsed filtered cathodic arc deposition. J Mater Sci 48:3789CrossRefGoogle Scholar
  17. 17.
    Pan LL, Li GY, Lian JS (2013) Structural, optical and electrical properties of cerium and gadolinium doped CdO thin films. Appl Surf Sci 274:365CrossRefGoogle Scholar
  18. 18.
    Yu KM, Mayer MA, Speaks DT, He H, Zhao R, Hsu L, Mao SS, Haller EE, Walukiewicz W (2012) Ideal transparent conductors for full spectrum photovoltaics. J Appl Phys 111:123505CrossRefGoogle Scholar
  19. 19.
    Dakhel AA (2009) Influence of dysprosium doping on the electrical and optical properties of CdO thin films. Sol Energy 83:934CrossRefGoogle Scholar
  20. 20.
    Chu WK, Mayer JW, Nicolet MA, Buck TM, Amsel G, Eisen F (1973) Principles and applications of ion beam techniques for the analysis of solids and thin films. Thin Solid Films 17:1CrossRefGoogle Scholar
  21. 21.
    Doolittle LR (1986) A semiautomatic algorithm for rutherford backscattering analysis. Nucl Instrum Meth B 15:227CrossRefGoogle Scholar
  22. 22.
    Okuya M, Kaneko S, Hiroshima K, Yagi I, Murakami K (2001) Low temperature deposition of SnO2 thin films as transparent electrodes by spray pyrolysis of tetra-n-butyltin(IV). J Eur Ceram Soc 21:2099CrossRefGoogle Scholar
  23. 23.
    Li H, Wang J, Liu H, Yang C, Xu H, Li X, Cui H (2004) Sol–gel preparation of transparent zinc oxide films with highly preferential crystal orientation. Vacuum 77:57CrossRefGoogle Scholar
  24. 24.
    Abelès F (1972) Optical properties of solids. North-Holland Publication co, New YorkGoogle Scholar
  25. 25.
    Wu QuH (1989) Extraction of extinction coefficient of weak absorbing thin films from special absorption. J Phys D Appl Phys 22:1384CrossRefGoogle Scholar
  26. 26.
    Zhao Z, Morel DL, Ferekides CS (2002) Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition. Thin Solid Films 413:203CrossRefGoogle Scholar
  27. 27.
    Zhu Y, Mendelsberg RJ, Zhu J, Han J, Anders A (2013) Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition. Appl Surf Sci 265:738CrossRefGoogle Scholar
  28. 28.
    Saha B, Thapa R, Chattopadhyay KK (2008) Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique. Solid State Commun 145:33CrossRefGoogle Scholar
  29. 29.
    Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632CrossRefGoogle Scholar
  30. 30.
    Ueda N, Maeda H, Hosono H, Kawazoe H (1998) Band-gap widening of CdO thin films. J Appl Phys 84:6174CrossRefGoogle Scholar
  31. 31.
    K-i Kawamura, Maekawa K, Yanagi H, Hirano M, Hosono H (2003) Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse. Thin Solid Films 445:182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Enzhu Li
    • 1
  • Huixian Zhuo
    • 1
  • Hongcai He
    • 1
  • Ning Wang
    • 1
  • Tao Liu
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State ElectronicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations