Journal of Materials Science

, Volume 51, Issue 15, pp 7130–7144 | Cite as

Study of distinctions in the synergistic effects between carbon nanotubes and different metal oxide nanoparticles on enhancing thermal oxidative stability of silicone rubber

  • Lu Bai
  • Xiang Wang
  • Jin Tan
  • Hongyan Li
  • Junping Zheng
Original Paper


In this work, the distinctions in the synergistic effects between carbon nanotubes (CNTs) and different metal oxide (MeO) nanoparticles on enhancing the thermal oxidative stability of silicone rubber (SR) were studied in depth. Specifically, three kinds of MeO nanoparticles were attached onto the surface of CNTs, obtaining Fe2O3–CNTs, TiO2–CNTs, and SnO2–CNTs, respectively. These MeO nanoparticles-attached CNTs were then separately embedded into SR matrix to investigate their effect on the thermal oxidative stability of SR. The results indicated that different synergies between CNTs and different metal oxides existed: both Fe2O3 and SnO2 had positive synergistic effects with CNTs, while a negative synergic effect existed between TiO2 and CNTs. This phenomenon may be attributed to the fact that the existence of CNTs could promote the radical-capture reactions to some extent for Fe and Sn element, while a reverse trend was found in TiO2–CNTs/SR. Meanwhile, all the performances of SnO2–CNTs/SR exhibited a much higher positive synergy than those of Fe2O3–CNTs/SR: the synergy percentages of the tear strength and elongation at break for SnO2–CNTs/SR were even above 100 %. This result may be ascribed to the combined effect of the multi-electron transfer process in SnO2–CNTs/SR and the restriction of crystalline form of Fe2O3 in Fe2O3–CNTs/SR during thermal aging.


TiO2 Fe2O3 SnO2 Fumed Silica Silicone Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the National Natural Science Foundation of China (Grant No. 51273143) for supporting this research.


  1. 1.
    Wu H, Liu D, Zhang H, Wei C, Zeng B, Shi J, Yang S (2012) Solvothermal synthesis and optical limiting properties of carbon nanotube-based hybrids containing ternary chalcogenides. Carbon 50:4847–4855CrossRefGoogle Scholar
  2. 2.
    Ma PC, Zheng QB, Mäder E, Kim JK (2012) Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polymer 53:6081–6088CrossRefGoogle Scholar
  3. 3.
    Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33CrossRefGoogle Scholar
  4. 4.
    Rakhimkulov AD, Lomakin SM, Dubnikova IL, Shchegolikhin AN, Davidov EY, Kozlowski R (2010) The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites. J Mater Sci 45:633–640. doi: 10.1007/s10853-009-3977-7 CrossRefGoogle Scholar
  5. 5.
    Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951. doi: 10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  6. 6.
    Dittrich B, Wartig KA, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98:1495–1505CrossRefGoogle Scholar
  7. 7.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  8. 8.
    Yue L, Pircheraghi G, Monemian SA, Manas Zloczower I (2014) Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78:268–278CrossRefGoogle Scholar
  9. 9.
    Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523:1–24CrossRefGoogle Scholar
  10. 10.
    Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012) Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50:1289–1297CrossRefGoogle Scholar
  11. 11.
    Hapuarachchi TD, Bilotti E, Reynolds CT, Peijs T (2011) The synergistic performance of multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for unsaturated polyester. Fire Mater 35:157–169CrossRefGoogle Scholar
  12. 12.
    Hsu RS, Higgins D, Chen Z (2010) Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. Nanotechnology 21:165705CrossRefGoogle Scholar
  13. 13.
    Li Y, Yang T, Yu T, Zheng L, Liao K (2011) Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. J Mater Chem 21:10844CrossRefGoogle Scholar
  14. 14.
    Jiang T, Kuila T, Kim NH, Ku BC, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125CrossRefGoogle Scholar
  15. 15.
    Yang Y, Qiu S, Cui W, Zhao Q, Cheng X, Li RKY, Xie X, Mai YW (2009) A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates. J Mater Sci 44:4539–4545CrossRefGoogle Scholar
  16. 16.
    Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53:3378–3385CrossRefGoogle Scholar
  17. 17.
    Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber: synergistic effect of 3D MWCNT-Graphene in silicone rubber. Polym Int 63:1219–1228CrossRefGoogle Scholar
  18. 18.
    Song P, Liu L, Fu S, Yu Y, Jin C, Wu Q, Zhang Y, Li Q (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24:125704CrossRefGoogle Scholar
  19. 19.
    Li Y, Umer R, Isakovic A, Samad YA, Zheng L, Liao K (2013) Synergistic toughening of epoxy with carbon nanotubes and graphene oxide for improved long-term performance. RSC Adv 3:8849CrossRefGoogle Scholar
  20. 20.
    Sumfleth J, Adroher XC, Schulte K (2009) Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J Mater Sci 44:3241–3247. doi: 10.1007/s10853-009-3434-7 CrossRefGoogle Scholar
  21. 21.
    Lu H, Min Huang W (2013) Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl Phys Lett 102:231910CrossRefGoogle Scholar
  22. 22.
    Ma H, Tong L, Xu Z, Fang Z (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18:375602CrossRefGoogle Scholar
  23. 23.
    Pradhan B, Roy S, Srivastava SK, Saxena A (2015) Synergistic effect of carbon nanotubes and clay platelets in reinforcing properties of silicone rubber nanocomposites. J Appl Polym Sci. doi: 10.1002/app.41818 Google Scholar
  24. 24.
    Yang K, Gu M (2010) Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Compos A 41:215–221CrossRefGoogle Scholar
  25. 25.
    Yu Y, Ma LL, Huang WY, Li JL, Wong PK, Yu JC (2005) Coating MWNTs with Cu2O of different morphology by a polyol process. J Solid State Chem 178:1488–1494CrossRefGoogle Scholar
  26. 26.
    Meng X, Zhong Y, Sun Y, Banis MN, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon 49:1133–1144CrossRefGoogle Scholar
  27. 27.
    Kim ES, Lee TH, Kim EJ, Yoon JS (2012) Surface modification of carbon fiber and the mechanical properties of the silicone rubber/carbon fiber composites. J Appl Polym Sci 126:E410–E418CrossRefGoogle Scholar
  28. 28.
    Genovese A, Shanks RA (2008) Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. Compos A 39:398–405CrossRefGoogle Scholar
  29. 29.
    Li H, Tao S, Huang Y, Su Z, Zheng J (2013) The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives. Compos Sci Technol 76:52–60CrossRefGoogle Scholar
  30. 30.
    Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu X, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114:6944–6951CrossRefGoogle Scholar
  31. 31.
    Corrias M, Serp P, Kalck P, Dechambre G, Lacout JL, Castiglioni C, Kihn Y (2003) High purity multiwalled carbon nanotubes under high pressure and high temperature. Carbon 41:2361–2367CrossRefGoogle Scholar
  32. 32.
    Yi B, Rajagopalan R, Foley HC, Kim UJ, Liu X, Eklund PC (2006) Catalytic polymerization and facile grafting of poly(furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J Am Chem Soc 128:11307–11313CrossRefGoogle Scholar
  33. 33.
    Chen W, Fan Z, Zhang B, Ma G, Takanabe K, Zhang X, Lai Z (2011) Enhanced visible-light activity of titania via confinement inside carbon nanotubes. J Am Chem Soc 133:14896–14899CrossRefGoogle Scholar
  34. 34.
    Yan X, Tay BK, Yang Y (2006) Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 Sol. J Phys Chem B 110:25844–25849CrossRefGoogle Scholar
  35. 35.
    de Faria DLA, Venâncio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  36. 36.
    Zhang J, Feng S, Ma Q (2003) Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black. J Appl Polym Sci 89:1548–1554CrossRefGoogle Scholar
  37. 37.
    Prasad KE, Das B, Maitra U, Ramamurty U, Rao CNR (2009) Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc Natl Acad Sci USA 106:13186–13189CrossRefGoogle Scholar
  38. 38.
    Botter W, Ferreira Soares R, Galembeck F (1992) Interfacial reactions and self-adhesion of polydimethylsiloxanes. J Adhes Sci Technol 6:791–805CrossRefGoogle Scholar
  39. 39.
    Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRefGoogle Scholar
  40. 40.
    Kubo T, Nakahira A (2008) Local structure of TiO2-derived nanotubes prepared by the hydrothermal process. J Phys Chem C 112:1658–1662CrossRefGoogle Scholar
  41. 41.
    Yates HM, Nolan MG, Sheel DW, Pemble ME (2006) The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J Photochem Photobio A 179:213–223CrossRefGoogle Scholar
  42. 42.
    Zboril R, Mashlan M, Petridis D (2002) Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications. Chem Mater 14:969–982CrossRefGoogle Scholar
  43. 43.
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRefGoogle Scholar
  44. 44.
    Su Z (1999) Interfacial reaction of stannic oxide in silicone rubber at 300 °C. J Appl Polym Sci 73:2779–2781CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Li J, Wang N, Wu C, Dong G, Guan L (2012) Fully reversible conversion between SnO2 and Sn in SWNTs@SnO2 @PPy coaxial nanocable as high performance anode material for lithium ion batteries. J Phys Chem C 116:18612–18617CrossRefGoogle Scholar
  46. 46.
    Serranoruiz J, Huber G, Sanchezcastillo M, Dumesic J, Rodriguezreinoso F, Sepulvedaescribano A (2006) Effect of Sn addition to Pt/CeO2–Al2O3 and Pt/Al2O3 catalysts: an XPS, 119Sn Mössbauer and microcalorimetry study. J Catal 241:378–388CrossRefGoogle Scholar
  47. 47.
    Tselesh AS (2008) Anodic behaviour of tin in citrate solutions: the IR and XPS study on the composition of the passive layer. Thin Solid Films 516:6253–6260CrossRefGoogle Scholar
  48. 48.
    Fujii T, de Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2 -assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202CrossRefGoogle Scholar
  49. 49.
    Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti–Fe–O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lu Bai
    • 1
  • Xiang Wang
    • 1
  • Jin Tan
    • 1
  • Hongyan Li
    • 1
  • Junping Zheng
    • 1
  1. 1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations