Journal of Materials Science

, Volume 51, Issue 14, pp 6860–6875 | Cite as

Microstructure and electrical conductivity of aluminium/steel bimetallic rods processed by severe plastic deformation

  • Yuanshen Qi
  • Rimma Lapovok
  • Yuri Estrin
Original Paper


Equal-channel angular pressing (ECAP) was used to fabricate Al/steel bimetallic rod for potential application in overhead transmission conductors. Bimetallic rods consisted of an austenitic stainless steel 316L core and an Al alloy 6201 cladding layer. By means of ECAP processing at 175°C, increase of mechanical strength without loss of electrical conductivity was achieved for one particular rod geometry out of three geometries tested. X-ray diffraction and transmission electron microscopy were employed to analyse how the microstructure was influenced by the number of processing passes and the bimetallic rod geometry. The co-deformation mechanism of the bimetallic rod under ECAP and accelerated dynamic ageing of Al alloy 6201 were discussed based on the microstructure characterisation results.


Severe Plastic Deformation Friction Stir Processing Accumulative Roll Bonding Extrusion Direction Steel Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate the excellent technical assistance provided by Monash Centre of Electron Microscopy (MCEM). YQ is grateful to Dr. Enrico Bruder for technical discussions and Dr. Annalena Wolff for FIB training. YE acknowledges funding support from the Russian Ministry for Education and Science (Grant #14.A12.31.0001). RL acknowledges funding support from Australian Research Council (Grant # LP0991316).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Ashby M (2013) Designing architectured materials. Scr Mater 68:4–7CrossRefGoogle Scholar
  2. 2.
    Brechet Y, Embury JD (2013) Architectured materials: expanding materials space. Scr Mater 68:1–3CrossRefGoogle Scholar
  3. 3.
    Raabe D, Choi PP, Li Y, Kostka A, Sauvage X, Lecouturier F, Hono K, Kirchheim R, Pippan R, Embury D (2010) Metallic composites processed via extreme deformation: toward the limits of strength in bulk materials. MRS Bull 35:982–991CrossRefGoogle Scholar
  4. 4.
    Bachmaier A, Pippan R (2013) Generation of metallic nanocomposites by severe plastic deformation. Int Mater Rev 58:41–62CrossRefGoogle Scholar
  5. 5.
    Bouaziz O, Kim HS, Estrin Y (2013) Architecturing of metal-based composites with concurrent nanostructuring: a new paradigm of materials design. Adv Eng Mater 15:336–340CrossRefGoogle Scholar
  6. 6.
    Beygelzimer Y, Estrin Y, Kulagin R (2015) Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing. Adv Eng Mater 17:1853–1861CrossRefGoogle Scholar
  7. 7.
    Sapanathan T, Khoddam S, Zahiri SH, Zarei-Hanzaki A, Ibrahim R (2016) Hybrid metallic composite materials fabricated by sheathed powder compaction. J Mater Sci 51:3118–3124. doi: 10.1007/s10853-015-9621-9 CrossRefGoogle Scholar
  8. 8.
    Mousavi SA, Sartangi PF (2008) Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite. Mater Sci Eng, A 494:329–336CrossRefGoogle Scholar
  9. 9.
    Han W, Demkowicz MJ, Mara NA, Fu E, Sinha S, Rollett AD, Wang Y, Carpenter JS, Beyerlein IJ, Misra A (2013) Design of radiation tolerant materials via interface engineering. Adv Mater 25:6975–6979CrossRefGoogle Scholar
  10. 10.
    Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345:1455–1456CrossRefGoogle Scholar
  11. 11.
    Wu X, Jiang P, Chen L, Yuan F, Zhu YT (2014) Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA 111:7197–7201CrossRefGoogle Scholar
  12. 12.
    Wang Y, Molotnikov A, Diez M, Lapovok R, Kim HE, Wang JT, Estrin Y (2015) Gradient structure produced by three roll planetary milling: numerical simulation and microstructural observations. Mater Sci Eng, A 639:165–172CrossRefGoogle Scholar
  13. 13.
    Zhu K, Vassel A, Brisset F, Lu K, Lu J (2004) Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 52:4101–4110CrossRefGoogle Scholar
  14. 14.
    Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM InternationalGoogle Scholar
  15. 15.
    Diez M, Kim HE, Serebryany V, Dobatkin S, Estrin Y (2014) Improving the mechanical properties of pure magnesium by three-roll planetary milling. Mater Sci Eng, A 612:287–292CrossRefGoogle Scholar
  16. 16.
    Toth L, Arzaghi M, Fundenberger J, Beausir B, Bouaziz O, Arruffat-Massion R (2009) Severe plastic deformation of metals by high-pressure tube twisting. Scr Mater 60:175–177CrossRefGoogle Scholar
  17. 17.
    Osakada K, Limb M, Mellor PB (1973) Hydrostatic extrusion of composite rods with hard cores. Int J Mech Sci 15:291–307CrossRefGoogle Scholar
  18. 18.
    Ahmed N (1987) Extrusion of copper clad aluminum wire. J Mech Working Technol 2:19–32CrossRefGoogle Scholar
  19. 19.
    Tokuno H, Ikeda K (1991) Analysis of deformation in extrusion of composite rods. J Mater Process Technol 26:323–335CrossRefGoogle Scholar
  20. 20.
    Alcaraz JL, Gil-Sevillano J (1996) An analysis of the extrusion of bimetallic tubes by numerical simulation. Int J Mech Sci 38:157–173CrossRefGoogle Scholar
  21. 21.
    Kang CG, Jung YJ, Kwon HC (2002) Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation. J Mater Process Technol 124:49–56CrossRefGoogle Scholar
  22. 22.
    Kazanowski P, Epler ME, Misiolek WZ (2004) Bi-metal rod extrusion—process and product optimization. Mater Sci Eng, A 369:170–180CrossRefGoogle Scholar
  23. 23.
    Rhee KY, Han WY, Park HJ, Kim SS (2004) Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics. Mater Sci Eng, A 384:70–76CrossRefGoogle Scholar
  24. 24.
    Gueydan A, Domengès B, Hug E (2014) Study of the intermetallic growth in copper-clad aluminum wires after thermal aging. Intermetallics 50:34–42CrossRefGoogle Scholar
  25. 25.
    Mori K, Bay N, Fratini L, Micari F, Tekkaya AE (2013) Joining by plastic deformation. CIRP Ann-Manuf Techol 62:673–694CrossRefGoogle Scholar
  26. 26.
    Groche P, Wohletz S, Brenneis M, Pabst C, Resch F (2014) Joining by forming—a review on joint mechanisms, applications and future trends. J Mater Process Technol 214:1972–1994CrossRefGoogle Scholar
  27. 27.
    Martinsen K, Hu S, Carlson B (2015) Joining of dissimilar materials. CIRP Ann-Manuf Techn 64:679–699CrossRefGoogle Scholar
  28. 28.
    Divinski SV, Reglitz G, Golovin IS, Peterlechner M, Lapovok R, Estrin Y, Wilde G (2015) Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing. Acta Mater 82:11–21CrossRefGoogle Scholar
  29. 29.
    Sapanathan T, Khoddam S, Zahiri SH, Zarei-Hanzaki A (2014) Strength changes and bonded interface investigations in a spiral extruded aluminum/copper composite. Mater Des 57:306–314CrossRefGoogle Scholar
  30. 30.
    Kocich R, Macháčková A, Kunčická L, Fojtík F (2015) Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater Des 71:36–47CrossRefGoogle Scholar
  31. 31.
    Kocich R, Kunčická L, Davis CF, Lowe TC, Szurman I, Macháčková A (2016) Deformation behavior of multilayered Al–Cu clad composite during cold-swaging. Mater Des 90:379–388Google Scholar
  32. 32.
    Eivani AR, Taheri AK (2007) A new method for producing bimetallic rods. Mater Lett 61:4110–4113CrossRefGoogle Scholar
  33. 33.
    Eslami P, Taheri AK (2011) An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process. Mater Lett 65:1862–1864CrossRefGoogle Scholar
  34. 34.
    Zebardast M, Taheri AK (2011) The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process. J Mater Process Technol 211:1034–1043CrossRefGoogle Scholar
  35. 35.
    Jafarlou DM, Zalnezhad E, Ezazi MA, Mardi NA, Hassan MA (2015) The application of equal channel angular pressing to join dissimilar metals, aluminium alloy and steel, using an Ag–Cu–Sn interlayer. Mater Des 87:553–566Google Scholar
  36. 36.
    Eslami P, Taheri AK, Zebardast M (2013) A comparison between cold-welded and diffusion-bonded Al/Cu bimetallic rods produced by ECAE process. J Mater Eng Perform 22:3014–3023CrossRefGoogle Scholar
  37. 37.
    Narooei K, Taheri AK (2012) Strain field and extrusion load in ECAE process of bi-metal circular cross section. Appl Math Model 36:2128–2141CrossRefGoogle Scholar
  38. 38.
    Lapovok R, Tóth L, Winkler M, Semiatin S (2009) A comparison of continuous SPD processes for improving the mechanical properties of aluminum alloy 6111. J Mater Res 24:459–469CrossRefGoogle Scholar
  39. 39.
    Raab GJ, Valiev RZ, Lowe TC, Zhu YT (2004) Continuous processing of ultrafine grained Al by ECAP–Conform. Mater Sci Eng, A 382:30–34CrossRefGoogle Scholar
  40. 40.
    Kim B, Kim S, Woo B, Lee H, Park J, Jeong Y, Lee M, Ahn S (2005) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor. Google PatentsGoogle Scholar
  41. 41.
    Verhoeven F, Hejcman D, Lagae G, Gogola P (2015) Non-magnetic stainless steel wire as an armouring wire for power cables. Google PatentsGoogle Scholar
  42. 42.
    Nefzger P, Kaintzyk U, Nolasco JF (2003) Overhead power lines: planning, design, construction. Springer Science & Business MediaGoogle Scholar
  43. 43.
    Short TA (2014) Electric power distribution handbook. CRC PressGoogle Scholar
  44. 44.
    Valiev RZ, Murashkin MY, Sabirov I (2014) A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scr Mater 76:13–16CrossRefGoogle Scholar
  45. 45.
    Murashkin MY, Sabirov I, Kazykhanov V, Bobruk E, Dubravina A, Valiev RZ (2013) Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J Mater Sci 48:4501–4509. doi: 10.1007/s10853-013-7279-8 CrossRefGoogle Scholar
  46. 46.
    Cubero-Sesin JM, In H, Arita M, Iwaoka H, Horita Z (2014) High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci 49:6550–6557. doi: 10.1007/s10853-014-8240-1 CrossRefGoogle Scholar
  47. 47.
    Murashkin MY, Sabirov I, Sauvage X, Valiev RZ (2016) Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J Mater Sci 51:33–49. doi: 10.1007/s10853-015-9354-9 CrossRefGoogle Scholar
  48. 48.
    Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A (2011) Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater 59:7060–7069CrossRefGoogle Scholar
  49. 49.
    Rositter PL (2003) The electrical resistivity of metals and alloys. Cambridge University Press, CambridgeGoogle Scholar
  50. 50.
    Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Acta Mater 53:893–979Google Scholar
  51. 51.
    Williamson G, Smallman R (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos Mag 1:34–46CrossRefGoogle Scholar
  52. 52.
    Smallman R, Westmacott K (1957) Stacking faults in face-centred cubic metals and alloys. Philos Mag 2:669–683CrossRefGoogle Scholar
  53. 53.
    Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater 52:4589–4599CrossRefGoogle Scholar
  54. 54.
    Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61:2769–2782CrossRefGoogle Scholar
  55. 55.
    Lubarda V (2003) On the effective lattice parameter of binary alloys. Mech Mater 35:53–68CrossRefGoogle Scholar
  56. 56.
    Veveçka A, Cabibbo M, Langdon TG (2013) A characterization of microstructure and microhardness on longitudinal planes of an Al–Mg–Si alloy processed by ECAP. Mater Charact 84:126–133CrossRefGoogle Scholar
  57. 57.
    Vaseghi M, Taheri AK, Hong SI, Kim HS (2010) Dynamic ageing and the mechanical response of Al–Mg–Si alloy through equal channel angular pressing. Mater Des 31:4076–4082CrossRefGoogle Scholar
  58. 58.
    Roven HJ, Liu M, Werenskiold JC (2008) Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy. Mater Sci Eng, A 483–484:54–58CrossRefGoogle Scholar
  59. 59.
    Sha G, Tugcu K, Liao XZ, Trimby PW, Murashkin MY, Valiev RZ, Ringer SP (2014) Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Mater 63:169–179CrossRefGoogle Scholar
  60. 60.
    Tugcu K, Sha G, Liao XZ, Trimby P, Xia JH, Murashkin MY, Xie Y, Valiev RZ, Ringer SP (2012) Enhanced grain refinement of an Al–Mg–Si alloy by high-pressure torsion processing at 100 & #xB0;C. Mater Sci Eng, A 552:415–418CrossRefGoogle Scholar
  61. 61.
    Oh-ishi K, Hashi Y, Sadakata A, Kaneko K, Horita Z, Langdon TG (2002) Microstructural control of an Al–Mg–Si alloy using equal-channel angular pressing. Mater Sci Forum Trans Tech Publ 333–338Google Scholar
  62. 62.
    Khosravifard A, Ebrahimi R (2010) Investigation of parameters affecting interface strength in Al/Cu clad bimetal rod extrusion process. Mater Des 31:493–499CrossRefGoogle Scholar
  63. 63.
    Sapanathan T, Khoddam S, Zahiri SH (2013) Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: a study of bond strength and interfacial characteristics. J Alloy Compd 571:85–92CrossRefGoogle Scholar
  64. 64.
    Mozaffari A, Manesh HD, Janghorban K (2010) Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloy Compd 489:103–109CrossRefGoogle Scholar
  65. 65.
    Shahmir H, Nili-Ahmadabadi M, Mansouri-Arani M, Langdon TG (2013) The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Mater Sci Eng, A 576:178–184CrossRefGoogle Scholar
  66. 66.
    Mughrabi H (2006) Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations. Philos Mag 86:4037–4054CrossRefGoogle Scholar
  67. 67.
    Mughrabi H (2006) Dual role of deformation-induced geometrically necessary dislocations with respect to lattice plane misorientations and/or long-range internal stresses. Acta Mater 54:3417–3427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  2. 2.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia
  3. 3.Laboratory of Hybrid Nanostructured MaterialsNUST MISiSMoscowRussia

Personalised recommendations