Journal of Materials Science

, Volume 51, Issue 13, pp 6192–6206 | Cite as

A general method to synthesize a family of mesoporous silica nanoparticles less than 100 nm and their applications in anti-reflective/fogging coating

  • Xiying Li
  • Bing Shi
  • Watcharop Chaikittisilp
  • Mengmeng Li
  • Yujie Wang
  • Yong Liu
  • Li Gao
  • Liqun Mao
Original Paper


Recent advances in strategies for synthesizing mesoporous silica particle (MSN) have enabled the precise control of its morphology, size, and composition which afford the applications in drug delivery and heterogeneous catalysis. Especially for drug delivery, the size of MSNs <100 nm is a prerequisite allowing for hemolysis effect. However, a general method for the synthesis of MSNs with uniform size distribution below 100 nm still remains challenging. Herein, a general method was developed to synthesize a family of aqueous colloidal MSNs with uniform size <100 nm using small organic amines (SOAs) or nitrogen-containing heterocyclic compounds (NCHCs) as alkaline catalysts in the presence of cationic quaternary ammonium salts as organic templates. The size of MSNs can be easily adjusted within the range from 28 to 100 nm by the cooperative effect of the mixed alkaline catalysts or using different quaternary ammonium surfactants as templates. Also, texture properties of MSNs including pore diameter and surface area were controlled by selecting different kinds of SOAs or NCHCs. Based on the low refractive index of MSNs, these as-prepared MSNs serve as building blocks and afford an anti-reflective/fogging coating on glass slide through a facile dip-coating method.


Colloidal Suspension Mesoporous Silica Nanoparticles TTAB Organic Template Alkaline Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the financial aid from the National Natural Science Foundation of China (Grant No. 21104016).

Supplementary material

10853_2016_9916_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3854 kb)


  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuwli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 144:10834–10843CrossRefGoogle Scholar
  3. 3.
    Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303CrossRefGoogle Scholar
  4. 4.
    Hou Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schüth F, Stucky GD (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191CrossRefGoogle Scholar
  5. 5.
    Hou Q, Margolese DI, Cielsa U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schiith F, Stucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite material. Nature 368:317–321CrossRefGoogle Scholar
  6. 6.
    Stephen AB, Prouzet E, Pinnavaiat TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244CrossRefGoogle Scholar
  7. 7.
    Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867CrossRefGoogle Scholar
  8. 8.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  9. 9.
    Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  10. 10.
    Hollamby MJ, Borisova D, Brown P, Eastoe J, Grillo I, Shchukin D (2012) Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering. Langmuir 28:4425–4433CrossRefGoogle Scholar
  11. 11.
    Dou J, Zeng HC (2012) Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. J Am Chem Soc 134:16235–16246CrossRefGoogle Scholar
  12. 12.
    Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2-SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49:6383–6391. doi: 10.1007/s10853-014-8365-2 CrossRefGoogle Scholar
  13. 13.
    Wang HY, Wan Y (2009) Synthesis of ordered mesoporous Pd/carbon catalyst with bimodal pores and its application in water-mediated Ullmann coupling reaction of chlorobenzene. J Mater Sci 44:6553–6562. doi: 10.1007/s10853-009-3612-7 CrossRefGoogle Scholar
  14. 14.
    de Vos RM, Verwij H (1998) High-selectivity, high-flux silica membranes for gas separation. Science 279:1710–1711CrossRefGoogle Scholar
  15. 15.
    Dong J, Xu ZH, Wang F (2008) Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl Surf Sci 254:3522–3530CrossRefGoogle Scholar
  16. 16.
    Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413CrossRefGoogle Scholar
  17. 17.
    Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842CrossRefGoogle Scholar
  18. 18.
    Townson JL, Lin YS, Agola JO, Carnes EC, Leong HS, Lewis JD, Haynes CL, Brinker CJ (2013) Re-examining the size/charge paradigm: differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 135:16030–16033CrossRefGoogle Scholar
  19. 19.
    Zhao MW, Gao YN, Zheng LQ, Kang WP, Bai XT, Dong B (2010) Microporous silica hollow microspheres and hollow worm-like materials: a simple method for their synthesis and their application in controlled release. Eur J Inorg Chem 6:975–982CrossRefGoogle Scholar
  20. 20.
    Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources 245:656–662CrossRefGoogle Scholar
  21. 21.
    Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T (2010) Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings. Chem Mater 22:12–14CrossRefGoogle Scholar
  22. 22.
    Shimizu W, Murakami Y (2010) Microporous silica thin films with low refractive indices and high young’s modulus. ACS Appl Mater Interfaces 2:3128–3133CrossRefGoogle Scholar
  23. 23.
    Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257CrossRefGoogle Scholar
  24. 24.
    Pauwels B, van Tendeloo G, Thoelen C, van Rhijn W, Jacobs PA (2001) Structure determination of spherical MCM-41 particles. Adv Mater 13:1317–1320CrossRefGoogle Scholar
  25. 25.
    Fowler CE, Khushalani D, Lebeau B, Mann S (2001) Nanoscale materials with mesostructured interiors. Adv Mater 13:649–652CrossRefGoogle Scholar
  26. 26.
    Nooney RI, Thirunavukkarasu D, Chen YM, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728CrossRefGoogle Scholar
  27. 27.
    Lin HP, Tsai CP (2003) Synthesis of mesoporous silica nanoparticles from a low-concentration C(n)TMAX-sodium silicate components. Chem Lett 32:1092–1093CrossRefGoogle Scholar
  28. 28.
    Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463CrossRefGoogle Scholar
  29. 29.
    Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K (2009) Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem Commun 34:5094–5096CrossRefGoogle Scholar
  30. 30.
    Lin YS, Abadeer N, Hurley KR, Haynes CL (2011) Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soc 133:20444–20457CrossRefGoogle Scholar
  31. 31.
    Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3:1538–1544CrossRefGoogle Scholar
  32. 32.
    Wang JZ, Sugawara-Narutaki A, Shimojima A, Okubo T (2012) Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. J Colloid Interf Sci 385:41–47CrossRefGoogle Scholar
  33. 33.
    Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24:1462–1471CrossRefGoogle Scholar
  34. 34.
    Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K (2014) Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl Mater Interfaces 6:3491–3500CrossRefGoogle Scholar
  35. 35.
    Yano K, Fukushima Y (2003) Particle size control of mono-dispersed super-microporous silica spheres. J Mater Chem 13:2577–2581. doi: 10.1016/j.micromeso.2006.02.013 CrossRefGoogle Scholar
  36. 36.
    Fukushima Y, Yano K (2006) Synthesis of monodispersed super-microporous/mesoporous silica spheres with diameters in the low submicron range. Micropor Mesopor Mat 93:190–198CrossRefGoogle Scholar
  37. 37.
    Möller K, Kobler J, Bein T (2007) Colloidal suspensions of nanometer-sized mesoporous silica. Adv Funct Mater 17:605–612CrossRefGoogle Scholar
  38. 38.
    Kobler J, Möller K, Bein T (2008) Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2:791–799CrossRefGoogle Scholar
  39. 39.
    Jansen JC, Shan Z, Marchese L, Zhou W, Puil NVD, Maschmeyer T (2001) A new templating method for three-dimensional mesopore networks. Chem Commun 8:713–714CrossRefGoogle Scholar
  40. 40.
    Haskouri JEI, de Zárate DO, Guillem C, Beltrán-Porter A, Caldés M, Marcos MD, Beltrán-Porter D, Julio L, Amorós P (2002) Hierarchical Porous Nanosized Organosilicas. Chem Mater 14:4502–4504CrossRefGoogle Scholar
  41. 41.
    Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374CrossRefGoogle Scholar
  42. 42.
    Pan LM, He QJ, Liu JN, Chen Y, Ma M, Zhang LL, Shi JL (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725CrossRefGoogle Scholar
  43. 43.
    Zhang Q, Wang XL, Li PZ, Nguyen KT, Wang XJ, Luo Z, Zhang HC, Tan NS, Zhao YL (2014) Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 24:2450–2461CrossRefGoogle Scholar
  44. 44.
    Zhang K, Xu LL, Jiang JG, Calin N, Lam KF, Zhang SJ, Wu HH, Wu GD, Albela B, Bonneviot L, Wu P (2013) Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J Am Chem Soc 135:2427–2430CrossRefGoogle Scholar
  45. 45.
    Qiao ZA, Zhang L, Guo MY, Liu YL, Huo QS (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829CrossRefGoogle Scholar
  46. 46.
    Chiang YD, Lian HY, Leo SY, Wang SG, Yamauchi Y, Wu KCW (2011) Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J Phys Chem C 115:13158–13165CrossRefGoogle Scholar
  47. 47.
    Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760CrossRefGoogle Scholar
  48. 48.
    Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630CrossRefGoogle Scholar
  49. 49.
    Carcouët CCMC, van de Put MWP, Mezari B, Magusin PCMM, Laven J, Bomans PHH, Friedrich H, Esteves ACC, Sommerdijk NAJM, van Benthem RATM, de With G (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14:1433–1438CrossRefGoogle Scholar
  50. 50.
    Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T (2009) Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chem Mater 21:3719–3729CrossRefGoogle Scholar
  51. 51.
    Iler RK (1978) The chemistry of silica. Wiley, New YorkGoogle Scholar
  52. 52.
    Ryoo R, Park IS, Jun S, Lee CW, Kruk M, Jaroniec M (2001) Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. J Am Chem Soc 123:1650–1657CrossRefGoogle Scholar
  53. 53.
    Li XY, Shi B, Wang YJ, Li MM, Liu Y, Gao L, Mao LQ (2015) Preparation of monodispersed mesoporous silica particles and their applications in adsorption of Au3+ and Hg2+ after mercapto-functionalized treatment. Micropor Mesopor Mat 214:15–22CrossRefGoogle Scholar
  54. 54.
    Yi ZF, Dumée LF, Garvey CJ, Feng CF, She FH, Rookes JE, Mudie S, Cahill DM, Kong LX (2015) A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by in Situ Small Angle X-Ray Scattering. Langmuir 31:8478–8487CrossRefGoogle Scholar
  55. 55.
    Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128:13664–13665CrossRefGoogle Scholar
  56. 56.
    Guo CC, Holland GP (2014) Investigating lysine adsorption on fumed silica nanoparticles. J Phys Chem C 118:25792–25801CrossRefGoogle Scholar
  57. 57.
    Li XY, Du X, He JH (2010) Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26:13528–13534CrossRefGoogle Scholar
  58. 58.
    Cho JH, Hong JK, Char K, Caruso F (2006) Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. J Am Chem Soc 128:9935–9942CrossRefGoogle Scholar
  59. 59.
    Li XY, He JH (2013) Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl Mater Interfaces 5:5282–5290CrossRefGoogle Scholar
  60. 60.
    Bico J, Tordeux C, Quéré D (2001) Rough wetting. Europhys Lett 52:214–220CrossRefGoogle Scholar
  61. 61.
    Courbin L, Denieul E, Dressaire E, Roper M, Ajdari A, Stone HA (2007) Imbibition by polygonal spreading on microdecorated surfaces. Nat Mater 6:661–664CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiying Li
    • 1
  • Bing Shi
    • 1
  • Watcharop Chaikittisilp
    • 2
  • Mengmeng Li
    • 1
  • Yujie Wang
    • 3
  • Yong Liu
    • 1
  • Li Gao
    • 1
  • Liqun Mao
    • 1
  1. 1.Institute of Fine Chemistry and EngineeringHenan UniversityKaifengChina
  2. 2.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  3. 3.Chemical and Biological Engineering DepartmentIowa State UniversityAmesUSA

Personalised recommendations