Journal of Materials Science

, Volume 51, Issue 12, pp 5712–5723 | Cite as

Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation

  • Nannan Rong
  • Mengsha Chu
  • Yulin Tang
  • Chao Zhang
  • Xun Cui
  • Huichao He
  • Yunhuai Zhang
  • Peng Xiao
Original Paper


Because of the potential application in photoelectrochemical cells for water splitting, the synthesis of BiFeO3 (BFO) is receiving increasing attention. A simple, low-cost drop-casting route was used to synthesize Ti ions doped BiFeO3 thin films and the effects of the Ti ions doping on their crystal structure, morphology, and photoelectrocatalytic activity had been studied. X-ray diffraction results of Ti-BFO films showed that the doping of Ti ions lead to the distortion of crystal structure. Photoelectrochemical measurements indicated that the photoelectrocatalytic activities of BFO film doped with 5 % Ti ions showed the best performance. The UV–Vis absorption spectra of Ti-BFO films showed that the absorption wavelength of BFO doped with 5 % Ti had obvious shift and the band gap decreased. From the results of Mott–Schottky (M–S) plots, we calculated the positions of valence band (VB) and conduction band (CB) for Ti-BFO film. The outcomes showed that the band gap structure of BFO samples doped with 5 % Ti had more positive CB and more negative VB. The calculated photogenic charge carrier concentrations of BFO and Ti (0.05)-BFO were 5.07 × 1019 and 6.32 × 1019 cm−3, respectively. The reduced band gap and increased photogenic charge carrier concentration are the major factors contributing to the enhancement of photoelectrocatalytic performances of Ti-BFO films.


BiFeO3 BiVO4 Water Oxidation Photogenic Charge Carrier BiFeO3 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Chongqing University Postgraduates’ Innovation Project (2015) and the sharing of Chongqing University’s large-scale equipment.


  1. 1.
    Chen X, Shen S, Guo L, Mo SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefGoogle Scholar
  2. 2.
    Tang JW, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130:13885–13891CrossRefGoogle Scholar
  3. 3.
    Martin DJ, Umezawa N, Chen X, Ye J, Tang J (2013) Facet engineered Ag3PO4 for efficient water photooxidation. Energy Environ Sci 6:3380–3386CrossRefGoogle Scholar
  4. 4.
    Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  5. 5.
    Bai SL, Zhang KW, Sun JH, Luo RX, Li DQ, Chen AF (2014) Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis. CrystEngComm 16:3289–3295CrossRefGoogle Scholar
  6. 6.
    Barroso M, Cowan AJ, Pendlebury SR, Grätzel M, Klug DR, Durrant JR (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J Am Chem Soc 133:14868–14871CrossRefGoogle Scholar
  7. 7.
    He HC, Berglund SP, Rettie AJE, Chemelewski WD, Xiao P, Zhang YH, Mullins CB (2014) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2:9371–9379CrossRefGoogle Scholar
  8. 8.
    Borgarello E, Kiwi J, Graetzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002CrossRefGoogle Scholar
  9. 9.
    Zong X, Wu GP, Yan HJ, Ma GJ, Shi JY, Wen FY, Wang L, Li C (2010) Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J Phys Chem C 114:1963–1968CrossRefGoogle Scholar
  10. 10.
    Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  11. 11.
    Gai YQ, Li JB, Li SS, Xia JB, Wei SH (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402CrossRefGoogle Scholar
  12. 12.
    McDonald KJ, Choi KS (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23:4863–4869CrossRefGoogle Scholar
  13. 13.
    Zhang LW, Baumanis C, Robben L, Kandiel T, Bahnemann D (2011) Bi2WO6 inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. Small 7:2714–2720CrossRefGoogle Scholar
  14. 14.
    Royen P, Swars K (1957) Das System Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 Mol% Eisenoxyd. Angew Chem 69:779CrossRefGoogle Scholar
  15. 15.
    Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892CrossRefGoogle Scholar
  16. 16.
    Zhang XY, Lai CW, Zhao X, Wang DY, Dai JY (2005) Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl Phys Lett 87:143102CrossRefGoogle Scholar
  17. 17.
    Li S, Lin YH, Zhang BP, Wang Y, Nan CW (2010) Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J Phys Chem C 114:2903–2908CrossRefGoogle Scholar
  18. 18.
    Xu X, Lin YH, Li P, Shu L, Nan CW (2011) Synthesis and photocatalytic behaviors of high surface area BiFeO3 thin films. J Am Ceram Soc 94:2296–2299CrossRefGoogle Scholar
  19. 19.
    Papadas I, Christodoulides JA, Kioseoglou G, Armatas GS (2015) A high surface area ordered mesoporous BiFeO3 semiconductor with efficient water oxidation activity. J Mater Chem A 3:1587–1593CrossRefGoogle Scholar
  20. 20.
    Tsai CJ, Yang CY, Liao YC, Chueh YL (2012) Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J Mater Chem 22:17432–17436CrossRefGoogle Scholar
  21. 21.
    Li S, Zhang JM, Kibria MG, Mi Z, Chaker M, Ma DL, Nechache R, Rosei F (2013) Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light. Chem Commun 49:5856–5858CrossRefGoogle Scholar
  22. 22.
    Fei LF, Yuan JK, Hu YM, Wu CZ, Wang JL, Wang Y (2011) Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets. Cryst Growth Des 11:1049–1053CrossRefGoogle Scholar
  23. 23.
    Guo RQ, Fang L, Dong W, Zheng FG, Shen M (2010) Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys Chem C 114:21390–21396CrossRefGoogle Scholar
  24. 24.
    Liu ZK, Qi YJ, Lu CJ (2010) High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. J Mater Sci 21:380–384. doi: 10.1007/s10854-009-9928-x Google Scholar
  25. 25.
    Zhang YL, Schultz AM, Salvador PA, Rohrer GS (2011) Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J Mater Chem 21:4168–4174CrossRefGoogle Scholar
  26. 26.
    Dong W, Guo YP, Guo B, Li H, Liu HZ, Joel TW (2013) Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer. ACS Appl Mater Interfaces 5:6925–6929CrossRefGoogle Scholar
  27. 27.
    Moniz SJA, Blackman CS, Southern P, Weaver PM, Tang JW, Carmalt JC (2015) Visible-light driven water splitting over BiFeO3 photoanodes grownviathe LPCVD reaction of [Bi(OtBu)3] and [Fe(OtBu)3]2 and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale 7:16343–16353CrossRefGoogle Scholar
  28. 28.
    Yang YC, Liu Y, Wei JH, Pan CX, Xiong R, Shi J (2014) Electrospun nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. RSC Adv 4:31941–31947CrossRefGoogle Scholar
  29. 29.
    Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB (2006) Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics. Appl Phys Lett 88:162901CrossRefGoogle Scholar
  30. 30.
    Yuan GL, Or SW, Liu JM, Liu ZG (2006) Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl Phys Lett 89:052905CrossRefGoogle Scholar
  31. 31.
    Ji W, Yao K, Lim Y, Liang YC, Suwardi A (2013) Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting. Appl Phys Lett 103:062901CrossRefGoogle Scholar
  32. 32.
    Cao DW, Wang ZJ, Nasori Wen LY, Mi Y, Lei Y (2014) Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew Chem 126:11207–11211CrossRefGoogle Scholar
  33. 33.
    Yin J, Zou ZG, Ye JH (2003) A novel series of the new visible-light-driven photocatalysts MCo1/3Nb2/3O3 (M) Ca, Sr, and Ba) with special electronic structures. J Phys Chem B 107:4936–4941CrossRefGoogle Scholar
  34. 34.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32:751–767CrossRefGoogle Scholar
  35. 35.
    Liu J, Fang L, Zheng FG, Ju S, Shen MR (2009) Enhancement of magnetization in Eu doped BiFeO3 nanoparticles. Appl Phys Lett 95:022511–022511–022511–022513Google Scholar
  36. 36.
    Kan D, Pálová L, Anbusathaiah V, Cheng CJ, Fujino S, Nagarajan V, Rabe KM, Takeuchi I (2010) Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 20:1108–1115CrossRefGoogle Scholar
  37. 37.
    Debies TP, Rabalais JW (1977) X-ray photoelectron spectra and electronic structure of Bi2X3 (X = O, S, Se, Te). Chem Phys 20:277–283CrossRefGoogle Scholar
  38. 38.
    Jovalekić Č, Zdujić M, Atanasoska L (2009) Surface analysis of bismuth titanate by auger and X-ray photoelectron spectroscopy. J Alloy Compd 469:441–444CrossRefGoogle Scholar
  39. 39.
    Alfonso JE, Olaya JJ, Pinzón MJ, Marco JF (2013) Potentiodynamic polarization studies and surface chemical composition of bismuth titanate (BixTiyOz) films produced through radiofrequency magnetron sputtering. Materials 6:4441–4449CrossRefGoogle Scholar
  40. 40.
    Berglund SP, Rettie AJE, Hoang S, Mullins CB (2012) Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Phys Chem Chem Phys 14:7065–7075CrossRefGoogle Scholar
  41. 41.
    Bluhm H (2010) Photoelectron spectroscopy of surfaces under humid conditions. J Electron Spectrosc Relat Phenom 177:71–84CrossRefGoogle Scholar
  42. 42.
    Joshi UA, Jang JS, Borse PH, Lee JS (2008) Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl Phys Lett 92:242106–242106-3CrossRefGoogle Scholar
  43. 43.
    Clark SJ, Robertson J (2007) Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl Phys Lett 90:132903CrossRefGoogle Scholar
  44. 44.
    Wang DF, Zou ZG, Ye JH (2005) Photocatalytic H2 evolution over a new visible-light-driven photocatalyst In12NiCr2Ti10O42. Chem Phys Lett 411:285–290CrossRefGoogle Scholar
  45. 45.
    Saha S, Sinha TP, Mookerjee A (2000) First principles study of electronic structure and optical properties of CaTiO3. Eur Phys J B 18:207–214CrossRefGoogle Scholar
  46. 46.
    Chen SW, Huang MJ, Lin PA, Jeng HT, Lee JM, Haw SC, Chen SA, Lin HJ, Lu KT, Chen DP, Dou SX, Wang XL, Chen JM (2013) Orbital structure of FeTiO3 ilmenite investigated with polarization-dependent X-ray absorption spectroscopy and band structure calculations. Appl Phys Lett 102:042107CrossRefGoogle Scholar
  47. 47.
    Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787CrossRefGoogle Scholar
  48. 48.
    Moniz SJA, Quesada-Cabrera R, Blackman CS, Tang JW, Southern P, Weaver PM, Carmalt CJ (2014) A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J Mater Chem A 2:2922–2927CrossRefGoogle Scholar
  49. 49.
    Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Wasaki YI, Abe Y, Sugihara H (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B 110:11352–11360CrossRefGoogle Scholar
  50. 50.
    Hahn NT, Mullins CB (2010) Photoelectrochemical performance of nanostructured Ti- and Sn-doped r-Fe2O3 photoanodes. Chem Mater 22:6474–6482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina
  2. 2.College of PhysicsChongqing UniversityChongqingChina

Personalised recommendations