Advertisement

Journal of Materials Science

, Volume 51, Issue 11, pp 5146–5159 | Cite as

Effectiveness of thermo-compression for manufacturing native starch bulk materials

  • Arnaud Regazzi
  • Pierre J. J. Dumont
  • Barthélémy Harthong
  • Didier Imbault
  • Robert Peyroux
  • Jean-Luc Putaux
Original Paper

Abstract

In this study, thermo-compression molding was used to fabricate bulk materials from native starch powder. The objective was to determine the process parameters that enabled the welding of starch granules while preserving their crystallinity. The effects of forming parameters such as temperature, compression stress, and water content on the microstructural and mechanical properties of the starch samples were studied. For the optimal forming conditions, good compaction and cohesion of starch granules were obtained, while successfully preserving their native crystalline structure. The flexural Young’s modulus of the best samples reached an average value of 3 GPa and the flexural strength reached 10 MPa. However, these materials also exhibited unwanted cracks. The potential origin of these defects was associated to the heterogeneous distribution of water during processing as well as thermal shrinkage, moisture uptake, and viscoelastic recovery that occurred after the mold ejection.

Keywords

Starch Welding Compaction Compressive Stress Starch Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Institut Carnot PolyNat for funding this study. Besides, they would like to thank S. Rolland du Roscoat, P. Charrier, B. Khelifi, D. Curtil, R. Passas, C. Sillard, and S. Dufreney for their technical support, as well as R. Léger from Centre des Matériaux des Mines d’Alès (C2MA) at École des mines d’Alès for assistance with pycnometer experiments. The LGP2 and 3SR laboratories are part of LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030).

References

  1. 1.
    Schroeter J, Hobelsberger M (1992) On the mechanical properties of native starch granules. Starch 44:247–252CrossRefGoogle Scholar
  2. 2.
    Buléon A, Potocki-Véronèse G, Putaux J-L (2007) Self-association and crystallization of amylose. Aust J Chem 60:706–718CrossRefGoogle Scholar
  3. 3.
    Salerno M, Żukowska A, Thorat S, Ruffilli R, Stasiak M, Molenda M (2014) High resolution imaging of native wheat and potato starch granules based on local mechanical contrast. J Food Eng 128:96–102CrossRefGoogle Scholar
  4. 4.
    Ceseracciu L, Heredia-Guerrero JA, Dante S, Athanassiou A, Bayer IS (2015) Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl Mater Interfaces 7:3742–3753Google Scholar
  5. 5.
    Yu L, Christie G (2000) Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydr Polym 46:179–184CrossRefGoogle Scholar
  6. 6.
    Donovan JW (1979) Phase transitions of the starch-water system. Biopolymers 18:263–275CrossRefGoogle Scholar
  7. 7.
    Biliaderis CG, Page CM, Maurice TJ, Juliano BO (1986) Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J Agric Food Chem 34:6–14CrossRefGoogle Scholar
  8. 8.
    Day L, Fayet C, Homer S (2013) Effect of NaCl on the thermal behaviour of wheat starch in excess and limited water. Carbohydr Polym 94:31–37CrossRefGoogle Scholar
  9. 9.
    Biliaderis CG (2009) Structural transitions and related physical properties of starch. In: BeMiller J, Whistler R (eds) Starch—chemistry and technology. Academic Press, Thessaloniki, pp 293–372Google Scholar
  10. 10.
    Dello SAWG, van Dam RM, Slangen JJG, van de Poll MCG, Bemelmans MHA, Greve JWWM, Beets-Tan RGH, Wigmore SJ, Dejong CHC (2007) Liver volumetry plug and play: do it yourself with ImageJ. World J Surg 31:2215–2221CrossRefGoogle Scholar
  11. 11.
    Fayolle B, Verdu J (2005) Vieillissement Physique des Matériaux Polymères, Techniques de l’Ingénieur Propriétés Générales des Plastiques AM3150:1–19Google Scholar
  12. 12.
    Gebhardt R, Hanfland M, Mezouar M, Riekel C (2007) High-pressure potato starch granule gelatinization: synchrotron radiation Micro-SAXS/WAXS using a diamond anvil cell. Biomacromolecules 8:2092–2097CrossRefGoogle Scholar
  13. 13.
    Lozano JE, Rotstein E, Urbicain MJ (1983) Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. J Food Sci 48:1497–1502CrossRefGoogle Scholar
  14. 14.
    Millauer C, Rosa G, Schär R (1987) Determination of the density of starches and cereal products as a function of temperature and pressure. In: Meuser F, Manners DJ, Seibel W (eds) Plant polymeric carbohydrates. Woodhead Publishing, Cambridge, pp 86–103Google Scholar
  15. 15.
    Nishiyama Y, Putaux J-L, Montesanti N, Hazemann J-L, Rochas C (2010) B → A allomorphic transition in native starch and amylose spherocrystals monitored by in situ synchrotron X-ray diffraction. Biomacromolecules 11:76–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arnaud Regazzi
    • 1
    • 2
    • 3
    • 4
    • 5
  • Pierre J. J. Dumont
    • 1
    • 2
    • 3
    • 8
  • Barthélémy Harthong
    • 4
    • 5
  • Didier Imbault
    • 4
    • 5
  • Robert Peyroux
    • 4
    • 5
  • Jean-Luc Putaux
    • 6
    • 7
  1. 1.Univ. Grenoble Alpes, LGP2GrenobleFrance
  2. 2.CNRS, LGP2GrenobleFrance
  3. 3.Agefpi, LGP2GrenobleFrance
  4. 4.Univ. Grenoble Alpes, 3SR LabGrenobleFrance
  5. 5.CNRS, 3SR LabGrenobleFrance
  6. 6.Univ. Grenoble Alpes, CERMAVGrenobleFrance
  7. 7.CNRS, CERMAVGrenobleFrance
  8. 8.Université de Lyon, LaMCoS, INSA-Lyon, CNRS UMR5259LyonFrance

Personalised recommendations