Journal of Materials Science

, Volume 51, Issue 11, pp 5073–5081 | Cite as

Designing hydrogel nanocomposites using TiO2 as clickable cross-linkers

  • C. García-Astrain
  • M. Miljevic
  • I. Ahmed
  • L. Martin
  • A. Eceiza
  • L. Fruk
  • M. A. Corcuera
  • N. Gabilondo
Original Paper


Titanium dioxide (TiO2) nanoparticles with clickable functional groups were prepared to allow for the Diels–Alder “click” reaction with a furan-modified pigskin gelatin. Bifunctional dopamine-maleimide linker was employed for TiO2 functionalization with maleimide group. The obtained nanoparticles were characterized using TEM, Zeta potential and FTIR spectroscopy. Functional nanoparticles were subsequently used, together with chondroitin sulphate, as cross-linkers for gelatin hydrogels. Hydrogel controls with bare TiO2 and without nanoparticles were prepared for comparison. The swelling and rheological properties of the nanocomposite hydrogels confirmed the formation of the covalently linked heterogeneous networks. An increase in the storage moduli values was recorded when using maleimide-coated nanoparticles. At the same time, the swelling of the network was significantly reduced indicating the formation of more cross-linked networks. The participation of the surface attached maleimide functional groups through the Diels–Alder cycloaddition was thus confirmed. In addition, hydrogels responded to electrostatic forces as observed by electrostatic force microscopy.


Storage Modulus Chondroitin Sulphate Maleimide Simulated Intestinal Fluid Hydrogel Sample 



Financial support from the Basque Country Government in the frame of Grupos Consolidados (IT-776-13) is gratefully acknowledged. C. García-Astrain wishes to acknowledge the Universidad del País Vasco/Euskal Herriko Unibertsitatea (Ayudas para la Formación de Personal Investigador) for PhD grant PIFUPV10/034. M. M. acknowledges financial support of DAAD. Moreover, technical and human support provided by SGIker (UPV/EHU, MINECO, GV/EJ, ERDF and ESF) is also gratefully acknowledged.


  1. 1.
    Salguerio AM, Daniel-da-Silva AL, Fateixa S, Trindade T (2013) κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym 91:100–109CrossRefGoogle Scholar
  2. 2.
    Campbell SB, Patenaude M, Hoare T (2013) Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14:644–653CrossRefGoogle Scholar
  3. 3.
    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344–359CrossRefGoogle Scholar
  4. 4.
    Moon YE, Jung G, Yun J, Kim HI (2013) Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mat Sci Eng B Solid 178:1097–1103CrossRefGoogle Scholar
  5. 5.
    Tongwa P, Nygaard R, Bai B (2013) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794CrossRefGoogle Scholar
  6. 6.
    Haraguchi N (2007) Nanocomposite hydrogels. Curr Opin Solid St M 11:47–54CrossRefGoogle Scholar
  7. 7.
    Aimé C, Coradin T (2012) Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. J Polym Sci Pol Phys 50:669–680CrossRefGoogle Scholar
  8. 8.
    Gutierrez J, Fernandes SCM, Mondragon I, Tercjak A (2013) Multifunctional hybrid nanopapers based on bacterial cellulose and sol-gel synthesized titanium/vanadium oxide nanoparticles. Cellulose 20:1301–1311CrossRefGoogle Scholar
  9. 9.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349CrossRefGoogle Scholar
  10. 10.
    Pasqui D, Golini L, Giovampaola CD, Atrei A, Barbucci R (2011) Chemical and biological properties of polysaccharide-coated titania nanoparticles: the key role of proteins. Biomacromolecules 12:1243–1249CrossRefGoogle Scholar
  11. 11.
    Pasqui D, Rossi A, Di Cintio F, Barbucci R (2007) Functionalized titanium oxide surfaces with phosphated carboxymethyl cellulose: characterization and bonelike cell behavior. Biomacromolecules 8:3965–3972CrossRefGoogle Scholar
  12. 12.
    Wu S, Weng Z, Liu X, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24:5464–5481CrossRefGoogle Scholar
  13. 13.
    Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S (2015) Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polym Degrad Stabil 95:1894–1902CrossRefGoogle Scholar
  14. 14.
    Marija L, Nedeljko M, Maja R, Zoran S, Marija R, Melina KK (2014) Photocatalytic degradation of C.I. acid orange 7 by TiO2 nanoparticles immobilized onto/into chitosan-based hydrogel. Polym Compos 35:806–815CrossRefGoogle Scholar
  15. 15.
    Biswal M, Bhardwaj K, Singh PK, Singh P, Yadav P, Prabhune A, Rode C, Ogale S (2013) Nanoparticle-loaded multifunctional natural seed gel-bits for efficient water purification. RSC Adv 3:2288–2295CrossRefGoogle Scholar
  16. 16.
    Huyen DN, Tung NT, Thien ND, Thanh LH (2011) Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 11:1924–1931CrossRefGoogle Scholar
  17. 17.
    Si S, Zhou R, Xing Z, Xu H, Cai Y, Zhang Q (2013) A study of hybrid organic/inorganic hydrogel films based on in situ-generated TiO2 nanoparticles and methacrylated gelatine. Fiber Polym 14:982–989CrossRefGoogle Scholar
  18. 18.
    Xu B, Li H, Wang Y, Zhang G, Zhang T (2013) Nanocomposite hydrogels with high strength crosslinked by titania. RSC Adv 3:7233–7236CrossRefGoogle Scholar
  19. 19.
    Pasqui D, Atrei A, Giani G, De Gagna M, Barbucci R (2011) Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater Lett 65:392–395CrossRefGoogle Scholar
  20. 20.
    Daniel-da-Silva AL, Salgueiro AM, Trindade T (2013) Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. Gold Bull 46:25–33CrossRefGoogle Scholar
  21. 21.
    Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38CrossRefGoogle Scholar
  22. 22.
    Fajardo AR, Silva MB, Lopes LC, Piai JF, Rubira AF, Muniz EC (2012) Hydrogel based on an alginate-Ca2+/chondroitin sulfate matrix as a potential colon-specific drug delivery system. J Polym Sci Pol Phys 50:669–680CrossRefGoogle Scholar
  23. 23.
    Khanlari A, Detamore MS, Gehrke SH (2013) Increasing cross-linking efficiency of methacrylated chondroitin sulfate hydrogels by copolymerization with oligo(ethylene glycol) diacrylates. Macromoelcules 46:9609–9617CrossRefGoogle Scholar
  24. 24.
    Oprea AM, Profier L, Lupusoru CE, Ghiciuc CM, Ciolacu D, Vasile C (2012) Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohydr Polym 87:721–729CrossRefGoogle Scholar
  25. 25.
    Yu F, Cao X, Li Y, Zeng L, Zhu J, Wangac G, Chen X (2014) Diels-Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem 5:5116–5123CrossRefGoogle Scholar
  26. 26.
    Tirino P, Laurino R, Maglio G, Malinconico M, Gomez d’Ayala G, Laurienzo P (2014) Synthesis of chitosan–PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition. Carbohydr Polym 112:736–745CrossRefGoogle Scholar
  27. 27.
    Du H, Zha G, Gao L, Wang H, Li X, Shen Z, Zhu W (2014) Fully biodegradable antibacterial hydrogels via thiol-ene “click” chemistry. Polym Chem 5:4002–4008CrossRefGoogle Scholar
  28. 28.
    Gandini A (2013) The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog Polym Sci 38:1–29CrossRefGoogle Scholar
  29. 29.
    García-Astrain C, Gandini A, Peña C, Algar I, Eceiza A, Corcuera MA, Gabilondo N (2014) Diels–Alder “click” chemistry for the cross-linking of furfuryl-gelatin-polyetheramine hydrogels. RSC Adv 4:35578–35587CrossRefGoogle Scholar
  30. 30.
    Yu F, Cao X, Zeng L, Zhang Q, Chen X (2013) An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering. Carbohydr Polym 97:188–195CrossRefGoogle Scholar
  31. 31.
    Nimmo CM, Owen SC, Shoichet MS (2011) Diels–Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12:824–830CrossRefGoogle Scholar
  32. 32.
    García-Astrain C, Gandini A, Coelho D, Mondragon I, Retegi A, Eceiza A, Corcuera MA, Gabilondo N (2013) Green chemistry for the synthesis of methacrylate-based hydrogels crosslinked through Diels–Alder reaction. Eur Polym J 49:3998–4007CrossRefGoogle Scholar
  33. 33.
    Wei HL, Yao K, Chu HJ, Li ZC, Zhu J, Shen YM, Zhao ZX, Feng YL (2012) Click synthesis of the thermo- and pH-sensitive hydrogels containing b-cyclodextrins. J Mater Sci 47:332–340. doi: 10.1007/s10853-011-5802-3 CrossRefGoogle Scholar
  34. 34.
    Garcia-Astrain C, Ahmed I, Kendziora D, Guaresti O, Eceiza A, Fruk L, Corcuera MA, Gabilondo N (2015) Effect of maleimide-functionalized gold nanoparticles on hybrid biohydrogel properties. RSC Adv 5:50268–50277CrossRefGoogle Scholar
  35. 35.
    García-Astrain C, Chen C, Burón M, Palomares T, Eceiza A, Fruk L, Corcuera MA, Gabilondo N (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16:1301–1310CrossRefGoogle Scholar
  36. 36.
    Geiseler B, Miljevic M, Müller P, Fruk L (2012) Phototriggered production of reactive oxygen species by TiO2 nanospheres and rods. J Nanomater 2012:1–9CrossRefGoogle Scholar
  37. 37.
    Geiseler B, Fruk L (2012) Bifunctional catechol based linkers for modification of TiO2 surfaces. J Mater Chem 22:735–741CrossRefGoogle Scholar
  38. 38.
    Chen C, Ahmed I, Fruk L (2013) Reactive oxygen species production by catechol stabilized copper nanoparticles. Nanoscale 5:11610–11614CrossRefGoogle Scholar
  39. 39.
    Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377:88–93CrossRefGoogle Scholar
  40. 40.
    Gutierrez J, Tercjak A, Peponi L, Mondragon I (2009) Conductive properties of inorganic and organic TiO2/polystyrene-block-poly(ethylene oxide) nanocomposites. J Phys Chem C 113:8601–8605CrossRefGoogle Scholar
  41. 41.
    Palui G, Garai A, Nanda J, Nandi AK, Banerjee A (2010) Organogels from different self-assembling new dendritic peptides: morphology, rheology, and structural investigations. J Phys Chem B 114:1249–1256CrossRefGoogle Scholar
  42. 42.
    Raza M, Bachinger A, Zahn N, Kickelbick G (2014) Interaction and uv-stability of various organic capping agents on the surface of anatase nanoparticles. Materials 7:2890–2912CrossRefGoogle Scholar
  43. 43.
    Raafat AI (2010) Gelatin based pH-sensitive hydrogels for colon-specific oral drug delivery: synthesis, characterization, and in vitro release study. J Appl Polym Sci 118:2642–2649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.‘Materials + Technologies’ Group, Department of Chemical and Environmental Engineering, Polytechnic SchoolUniversity of the Basque CountryDonostia-San SebastiánSpain
  2. 2.DFG-Centre for Functional Nanostrucutres (CFN)Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Macrobehavior-Mesostructure-Nanotechnology General Research Service (SGIker), Polytechnic SchoolUniversity of the Basque CountryDonostia-San SebastiánSpain

Personalised recommendations