Skip to main content
Log in

Effect of alloying on the stabilities and catalytic properties of Ag–Au bimetallic subnanoclusters: a theoretical investigation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Density functional theory has been applied to study the geometric and electronic structures and the catalytic properties of Ag and AgAu clusters for CO oxidation. The calculated results suggest that the doping of Au atoms improve the stability of AgAu clusters. Correspondingly, the binding energy (BE) per atom of Ag n Au is larger than that of pure Ag n+1 cluster, due to strong hybridization between the d orbitals of Au and the s orbitals of Ag in Ag n Au clusters. With the increasing Au concentration, the BE of Ag13−n Aun(n = 1–8) clusters increase smoothly, while second-order difference of energies (Δ2 E) and fragmentation energies (ΔE) show an even–odd oscillation. The AgAu clusters containing an odd n umber of gold atoms (Ag13−n Au n , n = 3, 5, 7) are relatively stable compared to their neighbor. The CO and O2 adsorption properties on the Ag13, Ag10Au3, Ag8Au5, and Ag6Au7 clusters suggest that O2 is strongly activated by the clusters, while the activation of CO is much weak. Furthermore, the activation of O2 on AgAu cluster is stronger than that on pure Ag13 cluster, especially on Ag8Au5 cluster, due to the strengthened polarization of O–O bond. Compared to Ag13, Ag10Au3, and Ag6Au7 clusters, the lower energy barriers on Ag8Au5 cluster suggest a higher catalytic activity of Ag8Au5 cluster for O2 dissociation and CO oxidation reactions. The calculated results suggest that Ag8Au5 cluster could effectively reduce the carbon monoxide poisoning and exhibits the excellent catalytic performance for CO oxidation. Our study provides atomic-scale insights into the nature of the interfacial effects that determine CO oxidation on Ag–Au cluster catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36

    Article  Google Scholar 

  2. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  Google Scholar 

  3. Kim HY, Kim HG, Kim DH, Lee HM (2008) Over stabilization of the metastable structure of isolated Ag–Pd bimetallic clusters. J Phys Chem C 112:17138–17142

    Article  Google Scholar 

  4. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  Google Scholar 

  5. Gao Y, Shao N, Bulusu S, Zeng XC (2008) Effective CO oxidation on endohedral gold-cage nanoclusters. J Phys Chem C 112:8234–8238

    Article  Google Scholar 

  6. Liu X, Tian D, Ren S, Meng C (2015) Structure sensitivity of NO adsorption–dissociation on Pd n (n = 8, 13, 19, 25) Clusters. J Phys Chem C 119:12941–12948

    Article  Google Scholar 

  7. Rodriguez J (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24:223–287

    Article  Google Scholar 

  8. Deng L, Hu W, Deng H, Xiao S, Tang J (2011) Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J Phys Chem C 115:11355–11363

    Article  Google Scholar 

  9. Lozano XL, Mottet C, Weissker HC (2013) Effect of alloying on the optical properties of Ag–Au nanoparticles. J Phys Chem C 117:3062–3068

    Article  Google Scholar 

  10. Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CR, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996

    Article  Google Scholar 

  11. Paramanik B, Patra A (2014) Fluorescent AuAg alloy clusters: synthesis and SERS applications. J Mater Chem C 2:3005–3012

    Article  Google Scholar 

  12. Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of gold–silver binary cluster anions (Au n Ag m , 2 ≤ n + m ≤ 4). J Chem Phys 115:3657–3663

    Article  Google Scholar 

  13. Weis P, Welz O, Vollmer E, Kappes MM (2004) Structures of mixed gold–silver cluster cations (Ag (m) Au (n)+, m + n < 6): ion mobility measurements and density-functional calculations. J Chem Phys 120:677–684

    Article  Google Scholar 

  14. Bonacic-Koutecky V, Burda J, Mitric R, Ge MF, Zampella G, Fantucci P (2002) Density functional study of structural and electronic properties of bimetallic silver–gold clusters: comparison with pure gold and silver clusters. J Chem Phys 117:3120–3131

    Article  Google Scholar 

  15. Zhao GF, Zeng Z (2006) Geometrical and electronic structures of Au m Ag n (2 ≤ m + n ≤ 8). J Chem Phys 125:014303–014314

    Article  Google Scholar 

  16. Tafoughalt M, Samah M (2012) Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Phys B 407:2014–2024

    Article  Google Scholar 

  17. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) Geometrical and electronic structures of gold, silver, and gold–silver binary clusters: origins of ductility of gold and gold–silver alloy formation. J Phys Chem B 107:9994–10005

    Article  Google Scholar 

  18. Tafoughalt M, Samah M (2014) Structural properties and relative stability of silver-doped gold clusters, AgAu n−1 (n = 3–13): density functional calculations. Comput Theor Chem 1033:23–30

    Article  Google Scholar 

  19. Chen F, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380

    Article  Google Scholar 

  20. Zhao S, Ren Y, Ren Y, Wang J, Yin W (2010) Density functional study of hydrogen binding on gold and silver–gold clusters. J Phys Chem A 114:4917–4923

    Article  Google Scholar 

  21. Cerbelaud M, Ferrando R, Barcaro G, Fortunelli (2011) Optimization of chemical ordering in AgAu nanoalloys. Phys Chem Chem Phys 13:10232–10240

    Article  Google Scholar 

  22. Bae GT, Aikens CM (2012) Time-dependent density functional theory studies of optical properties of Ag nanoparticles: octahedra, truncated octahedra, and icosahedra. J Phys Chem C 116:10356–10367

    Article  Google Scholar 

  23. Aikens CM, Li S, Schatz GC (2008) From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J Phys Chem C 112:11272–11279

    Article  Google Scholar 

  24. Nigam S, Majumder C (2010) M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models. J Phys: Condens Matter 22:435001–435009

    Google Scholar 

  25. Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115:569–576

    Article  Google Scholar 

  26. Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735

    Article  Google Scholar 

  27. Liu JH, Wang AQ, Lin HP, Mou CY (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43

    Article  Google Scholar 

  28. Wang AQ, Liu JH, Lin SD, Lin TS, Mou CY (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197

    Article  Google Scholar 

  29. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  Google Scholar 

  30. Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144

    Article  Google Scholar 

  31. Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio molecular orbital theory. New York, Wiley

    Google Scholar 

  32. Baetzold RC (2007) Atomistic modeling of silver clusters formed on the surface of AgBr. J Phys Chem C 111:1385–1391

    Article  Google Scholar 

  33. Gutta P, Hoffmann R (2003) Propensity of different AgBr surfaces for photoinduced silver cluster formation: a molecular orbital analysis. J Phys Chem A 107:8184–8190

    Article  Google Scholar 

  34. Das NK, Shoji T (2012) Geometry, orbital interaction, and oxygen chemisorption properties of chromium-doped nickel clusters. J Phys Chem C 116:13353–13367

    Article  Google Scholar 

  35. Sahoo S, Rollman G, Entel P (2006) Segregation and ordering in binary transition metal clusters. Phase Transit 9:693–700

    Article  Google Scholar 

  36. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Israel J Chem 33:449–454

    Article  Google Scholar 

  37. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  Google Scholar 

  38. Wang Y, Wu G, Yang M, Wang J (2013) Competition between Eley–Rideal and Langmuir–Hinshelwood pathways of CO oxidation on Cu n and Cu n O (n = 6, 7) clusters. J Phys Chem C 117:8767–8773

    Article  Google Scholar 

  39. Ho J, Ervin KM, Lineberger WC (1990) Photoelectron spectroscopy of metal cluster anions: Cu n , Ag n , and Au n . J Chem Phys 93:6987–7002

    Article  Google Scholar 

  40. Taylor KJ, Pettiette-Hall CL, Chesnovsky O, Smalley RE (1992) Ultraviolet photoelectron spectra of coinage metal clusters. J Chem Phys 96:3319–3329

    Article  Google Scholar 

  41. Handschuh H, Cha CY, Bechthold PS, Gantefo¨r G, Berhardt W (1995) Electronic shells or molecular orbitals: photoelectron spectra of Ag n clusters. J Chem Phys 102:6406–6422

    Article  Google Scholar 

  42. Koutecky VB, Veyret V, Mitric R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450–10460

    Article  Google Scholar 

  43. Fournier R (2001) Theoretical study of the structure of silver clusters. J Chem Phys 115:2165–2177

    Article  Google Scholar 

  44. Chi Y, Zhao L, Lu X, An C, Guo W, Liu Y, Lawrence WuCM (2015) Effects of subnanometer silver clusters on photocatalyst AgBr(110) surface: a theoretical investigation. Catal Sci Technol. doi:10.1039/C5CY00705D

    Google Scholar 

  45. Chen FY, Johnston RL (2007) Structure and spectral characteristics of the nanoalloy Ag3 Au10. Appl Phys Lett 90:153123

    Article  Google Scholar 

  46. Wang CC, Zhao RN, Han JG (2006) Geometries and magnetisms of the Zr (n)(n = 2–8) clusters: the density functional investigations. J Chem Phys 124:194301–194308

    Article  Google Scholar 

  47. Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Ag7Au6: A 13-atom alloy quantum cluster. Angew Chem Int Ed 51:2155–2159

    Article  Google Scholar 

  48. Barron H, Fernández-Seivane L, Weissker HC, López-Lozano X (2013) Trends and properties of 13-atom Ag–Au nanoalloys I: structure and electronic properties. J Phys Chem C 117:21450–21459

    Article  Google Scholar 

  49. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Magic polyicosahedral core–shell clusters. Phys Rev Lett 93:105503–105506

    Article  Google Scholar 

  50. Huang CJ, Ye XX, Chen C, Lin S, Xie DQ (2013) A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Comput Theor Chem 1011:5–10

    Article  Google Scholar 

  51. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331

    Article  Google Scholar 

  52. Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) The CO oxidation mechanism and reactivity on PdZn alloys. Phys Chem Chem Phys 15:7768–7776

    Article  Google Scholar 

  53. Wang AQ, Chang CM, Mou CY (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867

    Article  Google Scholar 

  54. Xie Y, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl Surf Sci 258:6391–6397

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for NSFC (21303266), the Natural Science Foundation of Shandong Province (ZR2015BQ009), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2012NJ015), and the Fundamental Research Funds for the Central Universities (12CX02014A and 15CX08010A).

Funding

This study was funded by the Program for NSFC (21303266), the Natural Science Foundation of Shandong Province (ZR2015BQ009), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2012NJ015), and the Fundamental Research Funds for the Central Universities (12CX02014A and 15CX08010A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyue Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Y., Zhao, L., Lu, X. et al. Effect of alloying on the stabilities and catalytic properties of Ag–Au bimetallic subnanoclusters: a theoretical investigation. J Mater Sci 51, 5046–5060 (2016). https://doi.org/10.1007/s10853-016-9808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9808-8

Keywords

Navigation