Journal of Materials Science

, Volume 51, Issue 9, pp 4682–4690 | Cite as

Preparation and dielectric properties of copper phthalocyanine/graphene oxide nanohybrids via in situ polymerization

  • Zicheng Wang
  • Renbo Wei
  • Xiaobo Liu
Original Paper


A novel copper phthalocyanine-grafted graphene oxide (CuPc-g-GO) nanohybrid was prepared via in situ polymerization. Isophorone diisocyanate (IPDI) and 3-aminophenoxyphthalonitrile were employed to functionalize GO with phthalonitrile moieties (GO-IPDI-CN), which was subsequently polymerized with 1,3,5-tri-(3,4-dicyanophenoxy) benzene and CuCl, forming the copper phthalocyanine between the sheets of GO. The CuPc-g-GO and the intermediates were characterized by FTIR, TGA, DSC, XPS, SEM, UV–Vis, XRD, and AFM. The results suggested that CuPc was successfully grafted on the surface of GO, and the GO was completely exfoliated after the grafting of the CuPc. And the formation of the nanohybrids effectively enhanced the dielectric constant of CuPc, which was as high as 9.04 at 100 Hz, with an increment of 116 %, when the mass fraction of GO-IPDI-CN was 10 wt%.


Atomic Force Microscopy Graphene Oxide Phthalocyanine Oxygen Functional Group Phthalonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial supports from National Natural Science Foundation of China (Project Nos. 51373028 and 51403029), “863” National Major Program of High Technology (2012AA03A212), South Wisdom Valley Innovative Research Team Program, and Ningbo Major (key) Science and Technology Research Plan (2013B06011) are gratefully acknowledged.

Supplementary material

10853_2016_9785_MOESM1_ESM.doc (937 kb)
Supplementary material 1 (DOC 937 kb)


  1. 1.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  2. 2.
    Wang JY, Yang SY, Huang YL, Tien HW, Chin WK, Ma CCM (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575CrossRefGoogle Scholar
  3. 3.
    Kim J, Im H, Kim JM, Kim J (2012) Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites. J Mater Sci 47:1418–1426. doi: 10.1007/s10853-011-5922-9 CrossRefGoogle Scholar
  4. 4.
    Sun ST, Cao YW, Feng JC, Wu PY (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607CrossRefGoogle Scholar
  5. 5.
    Huang Y, Qin Y, Zhou Y, Niu H, Yu ZZ, Dong JY (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler-Natta polymerization. Chem Mater 22:4096–4102CrossRefGoogle Scholar
  6. 6.
    Bao CL, Guo YQQ, Song L, Kan YC, Qiana XD, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298CrossRefGoogle Scholar
  7. 7.
    Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi: 10.1007/s10853-013-7420-8 CrossRefGoogle Scholar
  8. 8.
    Lu GH, Mao S, Park SG, Ruffand RS, Chen JH (2009) Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res 2:192–200CrossRefGoogle Scholar
  9. 9.
    Zhou N, Li J, Chen H, Liao C, Chen L (2013) A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg 2+. Analyst 138:1091–1097CrossRefGoogle Scholar
  10. 10.
    de la Torre G, Claessens CG, Torres T (2007) Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem Comm 20:2000–2015Google Scholar
  11. 11.
    Ma Z, Zhao R, Yang XL, Wei JJ, Meng FB, Liu XB (2012) Microwave absorption properties of Fe3O4/CuPc hybrid material with cooperative dual nonlinear dielectric/magnetic resonance. Mater Lett 69:30–33CrossRefGoogle Scholar
  12. 12.
    Yang J, Yang XL, Pu ZJ, Chen L, Liu XB (2013) Controllable high dielectric permittivity of poly(arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction. Mater Lett 93:199–202CrossRefGoogle Scholar
  13. 13.
    Choi S, Hong SH, Cho SH, Park S, Park SM, Kim O, Ree M (2008) High-performance programmable memory devices based on hyperbranched copper phthalocyanine polymer thin films. Adv Mater 20:1766–1771CrossRefGoogle Scholar
  14. 14.
    Lee TW, Kwon Y, Park JJ, Pu L, Hayakawa T, Kakimoto MA (2007) Novel hyperbranched phthalocyanine as a hole injection nanolayer in organic light-emitting diodes. Macromol Rapid Commun 28:1657–1662CrossRefGoogle Scholar
  15. 15.
    Wang Y, Li Z, Tian Y, Zhao W, Liu X, Yang J (2014) A facile way to fabricate graphene sheets on TiO2 nanotube arrays for dye-sensitized solar cell applications. J Mater Sci 49:7991–7999. doi: 10.1007/s10853-014-8506-7. CrossRefGoogle Scholar
  16. 16.
    Li Y, Lu PF, Yan XZ, Jin L, Peng ZH (2013) Non-aggregated hyperbranched phthalocyanines: single molecular nanostructures for efficient semi-opaque photovoltaics. RSC Adv 3:545–558CrossRefGoogle Scholar
  17. 17.
    Voet A, Suriani LR (1952) Dielectric characteristics of pigment dispersions. J Coll Sci 7:1–10CrossRefGoogle Scholar
  18. 18.
    Zhao X, Zhao R, Yang XL, Zhong JC, Liu XB (2011) Synthesis and dielectric properties of hyperbranched CuPc based on biphenyl segments. J Elect Mater 10:2166–2171CrossRefGoogle Scholar
  19. 19.
    Guo M, Yan XZ, Kwon Y, Hayakawa T, Kakimoto M, Goodson T III (2006) High frequency dielectric response in a branched phthalocyanine. J Am Chem Soc 128:14820–14821CrossRefGoogle Scholar
  20. 20.
    Guo M, Hayakawa T, Kakimoto M, Goodson T III (2011) Organic macromolecular high dielectric constant materials: synthesis, characterization, and applications. J Phys Chem B 115:13419–13432CrossRefGoogle Scholar
  21. 21.
    Fan P, Wang L, Yang JT, Chen F, Zhong MQ (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23:365702CrossRefGoogle Scholar
  22. 22.
    Wang ZC, Yang W, Liu XB (2014) Electrical properties of poly (arylene ether nitrile)/graphene nanocomposites prepared by in situ thermal reduction route. J Polym Res 21:358CrossRefGoogle Scholar
  23. 23.
    Guo H, Chen ZR, Zhang JD, Yang XL, Zhao R, Liu XB (2012) Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites. J Polym Res 19(7):1–8CrossRefGoogle Scholar
  24. 24.
    Tang HX, Ehlert GJ, Lin YR, Sodano HA (2012) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12:84–90CrossRefGoogle Scholar
  25. 25.
    Zhang B, Chen Y, Zhuang XD, Liu G, Yu B, Kang ET, Zhu JH, Li YX (2010) Poly (N-vinylcarbazole) chemically modified graphene oxide. J Polym Sci Part A 48:2642–2649CrossRefGoogle Scholar
  26. 26.
    Keller TM (1988) Phthalonitrile-based high temperature resin. J Polym Sci 26:3199–3212CrossRefGoogle Scholar
  27. 27.
    Yang XL, Zhan YQ, Yang J, Tang HL, Meng FB, Zhong JC, Zhao R, Liu XB (2012) Effect of nitrile functionalized graphene on the properties of poly(arylene ether nitrile) nanocomposites. Polym Int 61:880–887CrossRefGoogle Scholar
  28. 28.
    Wang ZC, Yang W, Wei JJ, Meng FB, Liu XB (2014) Preparation and microwave absorption properties of rod-like iron phthalocyanine with nitrile and nitro groups. Mater Lett 123:6–9CrossRefGoogle Scholar
  29. 29.
    Kobayashi T, Kurokawa F, Uyed N, Suito E (1970) The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines. Spectrochim Acta A 26:1305–1311CrossRefGoogle Scholar
  30. 30.
    Alhassan MS, Qutubuddin S, Schiraldi AD, Agag T, Ishida H (2013) Dynamic puddle delineation and modeling of puddle-to-puddle filling spilling-merging-splitting overland flow processes. Eur Polym J 49:3825–3833CrossRefGoogle Scholar
  31. 31.
    Zhang DD, Zu SZ, Han BH (2009) Inorganic-organic hybrid porous materials based on graphite oxide sheets. Carbon 47:2993–3000CrossRefGoogle Scholar
  32. 32.
    Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295CrossRefGoogle Scholar
  33. 33.
    Gammon WJ, Kraft O, Reilly AC, Holloway BC (2003) Experimental comparison of N1s X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 41:1917–1920CrossRefGoogle Scholar
  34. 34.
    Yang JH, Gao YJ, Zhang W, Tang P, Tan J, Lu AH, Ma D (2013) Cobalt phthalocyanine-graphene oxide nanocomposite: complicated mutual electronic interaction. J Phys Chem C 117:3785–3788CrossRefGoogle Scholar
  35. 35.
    Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037. doi: 10.1023/A:1004398514901 CrossRefGoogle Scholar
  36. 36.
    He F, Lau S, Chan HL, Fan JT (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710–715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Research Branch of Advanced Functional Materials, Institute of Microelectronic & Solid State Electronic, High-Temperature Resistant Polymers and Composites Key Laboratory of Sichuan ProvinceUniversity of Electronic Science & Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations