Skip to main content
Log in

Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polypropylene (PP) is a kind of semi-crystalline polymer so it is hard to foam with supercritical carbon dioxide (SCCO2). We used hydroxylated multi-walled carbon nanotubes (HO-MWCNTs) as a modifier or nucleator to improve the crystallization behaviors and foaming performance of PP. We prepared the PP/HO-MWCNTs nanocomposite, foamed with SCCO2, and then compared with the pure PP. Results showed that the addition of HO-MWCNTs can make the crystallization type change from homogeneous to heterogeneous nucleation. With the increase of nucleation sites, the nucleation rate increased and the spherulites of the PP/HO-MWCNTs nanocomposite became finer and more uniform. With the formation of an interconnected network in the matrix at an appropriate addition of HO-MWCNT, the tensile strength increased, and the cell of foams was denser and smaller compared with pure PP when foamed with SCCO2 by a high-temperature impregnation method. When the content of HO-MWCNTs reached 1.0 %, the dispersion of HO-MWCNTs in PP matrix is the best and the foaming performance was improved the most significantly. Furthermore, the foaming performance became more stable and the dependence on foaming conditions such as pressure was weakened after addition of HO-MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci Part B 41:520–527

    Article  Google Scholar 

  2. Collias DI, Baird DG (1995) Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved-gas on the tensile toughness of the same polymer matrices and microcellular foams. Polym Eng Sci 14:1167–1177

    Article  Google Scholar 

  3. Shimbo M, Baldwin DF, Suh NP (1995) The viscoelastic behavior of microcellular plastics with varying cell size. Polym Eng Sci 17:1387–1393

    Article  Google Scholar 

  4. Krause B, Koops GH, van der Vegt NFA, Wessling M, Wübbenhorst M, Turnhout JA (2002) Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv Mater 15:1041–1046

    Article  Google Scholar 

  5. Zeng CC, Han XM, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer-clay nanocomposite foams prepared using carbon dioxide. Adv Mater 20:1743–1747

    Article  Google Scholar 

  6. Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H (2001) Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett 9:503–505

    Article  Google Scholar 

  7. Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3:2884–2946

    Article  Google Scholar 

  8. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907. doi:10.1007/s10853-007-1876-3

    Article  Google Scholar 

  9. Sandler JKW, Pegel S, Cadek M, Gojny F, van Es M, Lohmar J, Blau WJ, Schulte K, Windle AH, Shaffer MSP (2004) A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45:2001–2015

    Article  Google Scholar 

  10. Lu K, Grossiord N, Koning CE, Miltner HE, van Mele B, Loos J (2008) Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules 21:8081–8085

    Article  Google Scholar 

  11. García-Gutiérrez MC, Hernandez JJ, Nogales A, Panine P, Rueda DR, Ezquerra TA (2008) Influence of shear on the templated crystallization of poly (butylene terephthalate)/single wall carbon nanotube nanocomposites. Macromolecules 41:844–851

    Article  Google Scholar 

  12. Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 8:2964–2971

    Article  Google Scholar 

  13. Xu HS, Dai XJ, Lamb PR, Li ZM (2009) Poly (L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B 47:2341–2352

    Article  Google Scholar 

  14. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly (L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008

    Article  Google Scholar 

  15. Anoop AK, Agarwal US, Joseph R (2006) Carbon nanotubes induced crystallization of poly (ethylene terephthalate). Polymer 11:3976–3980

    Article  Google Scholar 

  16. Sundararajan PR, Singh S, Moniruzzaman M (2004) Surfactant-induced crystallization of polycarbonate. Macromolecules 26:10208–10211

    Article  Google Scholar 

  17. Zhai WT, Yu J, Ma WM, He JS (2007) Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym Eng Sci 9:1338–1343

    Article  Google Scholar 

  18. Sung YT, Kum CK, Lee HS, Byon NS, Yoon HG, Kim WN (2005) Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 46:5656–5661

    Article  Google Scholar 

  19. Leelapornpisit W, Ton-That MT, Perrin-Sarazin F, Cole KC, Denault J, Simard B (2005) Effect of carbon nanotubes on the crystallization and properties of polypropylene. J Polym Sci Part B 43:2445–2453

    Article  Google Scholar 

  20. Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene. J Appl Polym Sci 87:708–713

    Article  Google Scholar 

  21. Peneva Y, Valcheva M, Minkova L, Mičušík M, Omastová M (2008) Nonisothermal crystallization kinetics and microhardness of PP/CNT composites. J Macromol Sci B 47:1197–1210

    Article  Google Scholar 

  22. Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Béguin F, Blau WJ (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4:353–356

    Article  Google Scholar 

  23. Gupta A, Choudhary V (2013) Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly(trimethylene terephthalate) composites. J Mater Sci 48:3347–3356. doi:10.1007/s10853-012-7025-7

    Article  Google Scholar 

  24. Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M (2005) Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly (methyl methacrylate) composites. Macromol Res 13:206–211

    Article  Google Scholar 

  25. Qiu J, Wang GJ, Zhao CX (2008) Preparation and characterization of amphiphilic multi-walled carbon nanotubes. J Nanopart Res 10:659–663

    Article  Google Scholar 

  26. Nayak GC, Rajasekar R, Das CK (2011) Effect of modified MWCNT on the properties of PPO/LCP blend. J Mater Sci 46:2050–2057. doi:10.1007/s10853-010-5037-8

    Article  Google Scholar 

  27. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37. doi:10.1007/s10853-007-2209-2

    Article  Google Scholar 

  28. Hemmati M, Rahimi GH, Kaganj AB, Sepehri S, Rashidi AM (2008) Rheological and mechanical characterization of multi-walled carbon nanotubes/polypropylene nanocomposites. J Macromol Sci B 47:1176–1187

    Article  Google Scholar 

  29. Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-calcium carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi:10.1007/s10853-012-7039-1

    Article  Google Scholar 

  30. Hu SF, Zhu XB, Hu W, Yan L, Cai C (2013) Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites. Polym Bull 70:517–533

    Article  Google Scholar 

  31. Jyoti J, Singh BP, Rajput S, Singh VN, Dhakate SR (2016) Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite. J Mater Sci 51:2643–2652. doi:10.1007/s10853-015-9578-8

    Article  Google Scholar 

  32. Thess A, Lee R, Hikolaev P, Dai H, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  33. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  Google Scholar 

  34. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  35. Gupta AK, Purwar SN (1984) Crystallization of PP in PP/SEBS blends and its correlation with tensile properties. J Appl Polym Sci 29:1595–1609

    Article  Google Scholar 

  36. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19:1142–1144

    Article  Google Scholar 

  37. Soitong T, Pumchusak J (2011) The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers. J Mater Sci 46:1697–1704. doi:10.1007/s10853-010-4987-1

    Article  Google Scholar 

  38. Zheng J, Zhu ZM, Qi J, Zhou Z, Li P, Peng M (2011) Preparation of isotactic polypropylene-grafted multiwalled carbon nanotubes (iPP-g-MWNTs) by macroradical addition in solution and the properties of iPP-g-MWNTs/iPP composites. J Mater Sci 46:648–658. doi:10.1007/s10853-010-4787-7

    Article  Google Scholar 

  39. Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Mater Sci 42:2030–2036. doi:10.1007/s10853-006-0540-7

    Article  Google Scholar 

  40. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21276127) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Supplementary material 2 (DOC 11541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, M. & Ma, W. Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance. J Mater Sci 51, 4566–4579 (2016). https://doi.org/10.1007/s10853-016-9770-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9770-5

Keywords

Navigation