Journal of Materials Science

, Volume 51, Issue 9, pp 4566–4579 | Cite as

Polypropylene/hydroxyl-multiwall carbon nanotubes composites: crystallization behavior, mechanical properties, and foaming performance

  • Zhishan Li
  • Mingjie Chen
  • Weihua Ma
Original Paper


Polypropylene (PP) is a kind of semi-crystalline polymer so it is hard to foam with supercritical carbon dioxide (SCCO2). We used hydroxylated multi-walled carbon nanotubes (HO-MWCNTs) as a modifier or nucleator to improve the crystallization behaviors and foaming performance of PP. We prepared the PP/HO-MWCNTs nanocomposite, foamed with SCCO2, and then compared with the pure PP. Results showed that the addition of HO-MWCNTs can make the crystallization type change from homogeneous to heterogeneous nucleation. With the increase of nucleation sites, the nucleation rate increased and the spherulites of the PP/HO-MWCNTs nanocomposite became finer and more uniform. With the formation of an interconnected network in the matrix at an appropriate addition of HO-MWCNT, the tensile strength increased, and the cell of foams was denser and smaller compared with pure PP when foamed with SCCO2 by a high-temperature impregnation method. When the content of HO-MWCNTs reached 1.0 %, the dispersion of HO-MWCNTs in PP matrix is the best and the foaming performance was improved the most significantly. Furthermore, the foaming performance became more stable and the dependence on foaming conditions such as pressure was weakened after addition of HO-MWCNTs.


Foam Crystallization Behavior Saturation Pressure Heterogeneous Nucleation Site Half Crystallization Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Natural Science Foundation of China (No. 21276127) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2016_9770_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)
10853_2016_9770_MOESM2_ESM.doc (11.3 mb)
Supplementary material 2 (DOC 11541 kb)


  1. 1.
    Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J Polym Sci Part B 41:520–527CrossRefGoogle Scholar
  2. 2.
    Collias DI, Baird DG (1995) Tensile toughness of microcellular foams of polystyrene, styrene-acrylonitrile copolymer, and polycarbonate, and the effect of dissolved-gas on the tensile toughness of the same polymer matrices and microcellular foams. Polym Eng Sci 14:1167–1177CrossRefGoogle Scholar
  3. 3.
    Shimbo M, Baldwin DF, Suh NP (1995) The viscoelastic behavior of microcellular plastics with varying cell size. Polym Eng Sci 17:1387–1393CrossRefGoogle Scholar
  4. 4.
    Krause B, Koops GH, van der Vegt NFA, Wessling M, Wübbenhorst M, Turnhout JA (2002) Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv Mater 15:1041–1046CrossRefGoogle Scholar
  5. 5.
    Zeng CC, Han XM, Lee LJ, Koelling KW, Tomasko DL (2003) Polymer-clay nanocomposite foams prepared using carbon dioxide. Adv Mater 20:1743–1747CrossRefGoogle Scholar
  6. 6.
    Okamoto M, Nam PH, Maiti P, Kotaka T, Nakayama T, Takada M, Ohshima M, Usuki A, Hasegawa N, Okamoto H (2001) Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam. Nano Lett 9:503–505CrossRefGoogle Scholar
  7. 7.
    Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3:2884–2946CrossRefGoogle Scholar
  8. 8.
    Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907. doi: 10.1007/s10853-007-1876-3 CrossRefGoogle Scholar
  9. 9.
    Sandler JKW, Pegel S, Cadek M, Gojny F, van Es M, Lohmar J, Blau WJ, Schulte K, Windle AH, Shaffer MSP (2004) A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45:2001–2015CrossRefGoogle Scholar
  10. 10.
    Lu K, Grossiord N, Koning CE, Miltner HE, van Mele B, Loos J (2008) Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules 21:8081–8085CrossRefGoogle Scholar
  11. 11.
    García-Gutiérrez MC, Hernandez JJ, Nogales A, Panine P, Rueda DR, Ezquerra TA (2008) Influence of shear on the templated crystallization of poly (butylene terephthalate)/single wall carbon nanotube nanocomposites. Macromolecules 41:844–851CrossRefGoogle Scholar
  12. 12.
    Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 8:2964–2971CrossRefGoogle Scholar
  13. 13.
    Xu HS, Dai XJ, Lamb PR, Li ZM (2009) Poly (L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B 47:2341–2352CrossRefGoogle Scholar
  14. 14.
    Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly (L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008CrossRefGoogle Scholar
  15. 15.
    Anoop AK, Agarwal US, Joseph R (2006) Carbon nanotubes induced crystallization of poly (ethylene terephthalate). Polymer 11:3976–3980CrossRefGoogle Scholar
  16. 16.
    Sundararajan PR, Singh S, Moniruzzaman M (2004) Surfactant-induced crystallization of polycarbonate. Macromolecules 26:10208–10211CrossRefGoogle Scholar
  17. 17.
    Zhai WT, Yu J, Ma WM, He JS (2007) Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym Eng Sci 9:1338–1343CrossRefGoogle Scholar
  18. 18.
    Sung YT, Kum CK, Lee HS, Byon NS, Yoon HG, Kim WN (2005) Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 46:5656–5661CrossRefGoogle Scholar
  19. 19.
    Leelapornpisit W, Ton-That MT, Perrin-Sarazin F, Cole KC, Denault J, Simard B (2005) Effect of carbon nanotubes on the crystallization and properties of polypropylene. J Polym Sci Part B 43:2445–2453CrossRefGoogle Scholar
  20. 20.
    Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene. J Appl Polym Sci 87:708–713CrossRefGoogle Scholar
  21. 21.
    Peneva Y, Valcheva M, Minkova L, Mičušík M, Omastová M (2008) Nonisothermal crystallization kinetics and microhardness of PP/CNT composites. J Macromol Sci B 47:1197–1210CrossRefGoogle Scholar
  22. 22.
    Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Béguin F, Blau WJ (2004) Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett 4:353–356CrossRefGoogle Scholar
  23. 23.
    Gupta A, Choudhary V (2013) Rheologic and mechanical properties of multiwalled carbon nanotubes-reinforced poly(trimethylene terephthalate) composites. J Mater Sci 48:3347–3356. doi: 10.1007/s10853-012-7025-7 CrossRefGoogle Scholar
  24. 24.
    Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M (2005) Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly (methyl methacrylate) composites. Macromol Res 13:206–211CrossRefGoogle Scholar
  25. 25.
    Qiu J, Wang GJ, Zhao CX (2008) Preparation and characterization of amphiphilic multi-walled carbon nanotubes. J Nanopart Res 10:659–663CrossRefGoogle Scholar
  26. 26.
    Nayak GC, Rajasekar R, Das CK (2011) Effect of modified MWCNT on the properties of PPO/LCP blend. J Mater Sci 46:2050–2057. doi: 10.1007/s10853-010-5037-8 CrossRefGoogle Scholar
  27. 27.
    Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37. doi: 10.1007/s10853-007-2209-2 CrossRefGoogle Scholar
  28. 28.
    Hemmati M, Rahimi GH, Kaganj AB, Sepehri S, Rashidi AM (2008) Rheological and mechanical characterization of multi-walled carbon nanotubes/polypropylene nanocomposites. J Macromol Sci B 47:1176–1187CrossRefGoogle Scholar
  29. 29.
    Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-calcium carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi: 10.1007/s10853-012-7039-1 CrossRefGoogle Scholar
  30. 30.
    Hu SF, Zhu XB, Hu W, Yan L, Cai C (2013) Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites. Polym Bull 70:517–533CrossRefGoogle Scholar
  31. 31.
    Jyoti J, Singh BP, Rajput S, Singh VN, Dhakate SR (2016) Detailed dynamic rheological studies of multiwall carbon nanotube-reinforced acrylonitrile butadiene styrene composite. J Mater Sci 51:2643–2652. doi: 10.1007/s10853-015-9578-8 CrossRefGoogle Scholar
  32. 32.
    Thess A, Lee R, Hikolaev P, Dai H, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487CrossRefGoogle Scholar
  33. 33.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRefGoogle Scholar
  34. 34.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  35. 35.
    Gupta AK, Purwar SN (1984) Crystallization of PP in PP/SEBS blends and its correlation with tensile properties. J Appl Polym Sci 29:1595–1609CrossRefGoogle Scholar
  36. 36.
    Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19:1142–1144CrossRefGoogle Scholar
  37. 37.
    Soitong T, Pumchusak J (2011) The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers. J Mater Sci 46:1697–1704. doi: 10.1007/s10853-010-4987-1 CrossRefGoogle Scholar
  38. 38.
    Zheng J, Zhu ZM, Qi J, Zhou Z, Li P, Peng M (2011) Preparation of isotactic polypropylene-grafted multiwalled carbon nanotubes (iPP-g-MWNTs) by macroradical addition in solution and the properties of iPP-g-MWNTs/iPP composites. J Mater Sci 46:648–658. doi: 10.1007/s10853-010-4787-7 CrossRefGoogle Scholar
  39. 39.
    Boccaccini AR, Thomas BJC, Brusatin G, Colombo P (2007) Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Mater Sci 42:2030–2036. doi: 10.1007/s10853-006-0540-7 CrossRefGoogle Scholar
  40. 40.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations