Journal of Materials Science

, Volume 51, Issue 8, pp 4061–4069 | Cite as

Domain structure and polarization reversal in ferroelectric lanthanum-modified lead titanate ceramics investigated by piezoresponse force microscopy

  • André Marino Gonçalves
  • Fernando Andres Londono
  • Ducinei Garcia
  • José Antonio Eiras
Original Paper


In this work, the ferroelectric domain structure of (Pb0.79La0.21)TiO3 transparent ceramics and its response to an applied electric field were investigated by piezoresponse force microscopy (PFM). A qualitative three-dimensional reconstruction of the domains by PFM measurements revealed that the domain structure consists in stripes in two size scales (micro and nanometer) separated by 90° domain walls coexisting with 180° domains. While the nanoscale 90° domains were found arranged in organized structures, (e.g., lamellas, herringbones, and other unusual configurations), the 180° domains form a “labyrinth” structure, typical of ferroelectrics with a degree of disorder. Local application of an electric field reveals different coercive voltages to reorient 180° and the two types of 90° domains and the appearance of a different nanoscale 90° domain structure after poling. While the labyrinth structure is destroyed with relative low voltages, the created 90° domains structure persists, avoiding the formation of a single-domain structure.


Domain Wall Poling Process Ferroelectric Domain Piezoresponse Force Microscopy Domain Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge Mr. Francisco J. Picon for the technical assistance, and CAPES, CNPq, and FAPESP (#2008/04025-0 and #2013/03118-2) for the financial support.


  1. 1.
    Arlt G (1990) Twinning in ferroelectric and ferroelastic ceramics: stress relief. J Mater Sci 25:2655–2666CrossRefGoogle Scholar
  2. 2.
    Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J Appl Phys 51:4956–4960CrossRefGoogle Scholar
  3. 3.
    Gruverman A, Auciello O, Tokumoto H (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu Rev Mater Sci 28:101–123CrossRefGoogle Scholar
  4. 4.
    Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647CrossRefGoogle Scholar
  5. 5.
    Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41:107–116CrossRefGoogle Scholar
  6. 6.
    Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702CrossRefGoogle Scholar
  7. 7.
    McGilly LJ, Schilling A, Gregg JM (2010) Domain bundle boundaries in single crystal BaTiO3 lamellae: searching for naturally forming dipole flux-closure/quadrupole chains. Nano Lett 10:4200–4205CrossRefGoogle Scholar
  8. 8.
    Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ (2010) Local polarization dynamics in ferroelectric materials. Rep Prog Phys 73:056502CrossRefGoogle Scholar
  9. 9.
    Gruverman A, Rodriguez BJ, Dehoff C et al (2005) Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl Phys Lett 87:082902CrossRefGoogle Scholar
  10. 10.
    Gruverman A, Wu D, Fan H-J et al (2008) Vortex ferroelectric domains. J Phys 20:342201Google Scholar
  11. 11.
    Kalinin SV, Rodriguez BJ, Jesse S et al (2006) Vector piezoresponse force microscopy. Microsc Microanal 12:206–220CrossRefGoogle Scholar
  12. 12.
    Harnagea C, Pignolet A, Alexe M, Hesse D (2002) Piezoresponse scanning force microscopy: what quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integr Ferroelectr 44:113–124CrossRefGoogle Scholar
  13. 13.
    Iijima K, Takayama R, Tomita Y, Ueda I (1986) Epitaxial growth and the crystallographic, dielectric, and pyroelectric properties of lanthanum-modified lead titanate thin films. J Appl Phys 60:2914–2919CrossRefGoogle Scholar
  14. 14.
    Zhao Q, Liu Y, Shi W et al (1996) Nonlinear optical properties of lanthanum doped lead titanate thin film using Z-scan technique. Appl Phys Lett 69:458–459CrossRefGoogle Scholar
  15. 15.
    Londono FA, Eiras JA, Garcia D (2012) Optical and electro-optical properties of (Pb, La)TiO3 transparent ceramics. Opt Mater 34:1310–1313CrossRefGoogle Scholar
  16. 16.
    Londono FA, Eiras JA, Garcia D (2012) Optical and electro-optical characteristics of hot-pressing (Pb1−xLax)TiO3 ferroelectric ceramics. Bol Soc Esp Cerám Vidr 51:353–358CrossRefGoogle Scholar
  17. 17.
    Yamamoto T, Sakamoto J, Saito M, Niori H (2000) Domain structures of PbTiO3 single crystal and La-modified PbTiO3 thin film by kelvin force microscope. In: Proceedings of the ISAF 2000. 12th IEEE international symposium on aplication on ferroelectrics, vol. 2, pp 975–978Google Scholar
  18. 18.
    Liu H, Gong X, Liang J, et al (2006) The domain structure and pyroelectric properties of (111) preferred oriented PLT thin films prepared by RF magnetron sputtering. In: Proceedings of the ISAF 2006. 15th IEEE international symposium on the applications of ferroelectrics, pp 299–302Google Scholar
  19. 19.
    Shvartsman VV, Pertsev NA, Herrero JM et al (2005) Nonlinear local piezoelectric deformation in ferroelectric thin films studied by scanning force microscopy. J Appl Phys 97:104105CrossRefGoogle Scholar
  20. 20.
    Poyato R, Calzada ML, Shvartsman VV et al (2004) Direct characterization of nanoscale domain switching and local piezoelectric loops of (Pb, La)TiO3 thin films by piezoresponse force microscopy. Appl Phys A 81:1207–1212CrossRefGoogle Scholar
  21. 21.
    Dai X, Xu Z, Viehland D (1996) Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal-structured lead zirconate titanate ceramics. J Appl Phys 79:1021–1026CrossRefGoogle Scholar
  22. 22.
    Randall CA, Rossetti GA, Cao W (1993) Spatial variations of polarization in ferroelectrics and related materials. Ferroelectrics 150:163–169CrossRefGoogle Scholar
  23. 23.
    Rossetti GA, Cao W, Randall CA (1994) Microstructural characteristics and diffuse phase transition behavior of lanthanum-modified lead titanate. Ferroelectrics 158:343–350CrossRefGoogle Scholar
  24. 24.
    Bastos WB (2011) Domínios ferroelétricos em cerâmicas e materiais nanoestruturados: Investigação por microscopia de piezoresposta. PhD Dissertation, Universidade Federal de São CarlosGoogle Scholar
  25. 25.
    Shvartsman VV, Dkhil B, Kholkin AL (2013) Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy. Annu Rev Mater Res 43:423–449CrossRefGoogle Scholar
  26. 26.
    Shvartsman VV, Kholkin AL (2007) Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals. J Appl Phys 101:064108CrossRefGoogle Scholar
  27. 27.
    Zhao KY, Ruan W, Zeng HR et al (2014) Domain dynamics of La-doped PMN-PT transparent ceramics studied by piezoresponse force microscope. Appl Surf Sci 293:366–370CrossRefGoogle Scholar
  28. 28.
    Zhao KY, Zhao W, Zeng HR et al (2015) Tip-bias-induced domain evolution in PMN–PT transparent ceramics via piezoresponse force microscopy. Appl Surf Sci 337:125–129CrossRefGoogle Scholar
  29. 29.
    Bai F, Li J, Viehland D (2005) Domain engineered states over various length scales in (001)-oriented Pb(Mg1/3Nb2/3)O3−x%PbTiO3 crystals: electrical history dependence of hierarchal domains. J Appl Phys 97:054103CrossRefGoogle Scholar
  30. 30.
    Moreira EN (1996) Transição de fase difusa e comportamento relaxor em materiais ferroelétricos cerâmicos. PhD Dissertation, Universidade Federal de São CarlosGoogle Scholar
  31. 31.
    DeVries RC, Burke JE (1957) Microstructure of barium titanate ceramics. J Am Ceram Soc 40:200–206CrossRefGoogle Scholar
  32. 32.
    Lehnen P, Dec J, Kleemann W (2000) Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy. J Phys D Appl Phys 33:1932–1936CrossRefGoogle Scholar
  33. 33.
    Rossetti GA, Khachaturyan AG, Akcay G, Ni Y (2008) Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J Appl Phys 103:114113CrossRefGoogle Scholar
  34. 34.
    Ishibashi Y, Iwata M, Salje E (2005) Polarization reversals in the presence of 90° domain walls. Jpn J Appl Phys 44:7512–7517CrossRefGoogle Scholar
  35. 35.
    Catalan G, Seidel J, Ramesh R, Scott JF (2012) Domain wall nanoelectronics. Rev Mod Phys 84:119–156CrossRefGoogle Scholar
  36. 36.
    Meyer B, Vanderbilt D (2002) Ab initio study of ferroelectric domain walls in PbTiO3. Phys Rev B 65:104111CrossRefGoogle Scholar
  37. 37.
    Feigl L, Yudin P, Stolichnov I et al (2014) Controlled stripes of ultrafine ferroelectric domains. Nat Commun 5:4677CrossRefGoogle Scholar
  38. 38.
    Freitas VF, Protzek OA, Montoro LA et al (2013) A phenomenological model for ferroelectric domain walls and its implications for BiFeO3–PbTiO3 multiferroic compounds. J Mater Chem C 2:364–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Ferroic Materials Group, Department of PhysicsFederal University of São CarlosSão CarlosBrazil
  2. 2.Institute of PhysicsUniversidad de AntioquiaMedellinColombia

Personalised recommendations