Journal of Materials Science

, Volume 51, Issue 8, pp 4047–4054 | Cite as

Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance

  • Huabo Huang
  • Junlong Yao
  • Hongyan Chen
  • Xiaoping Zeng
  • Changlian Chen
  • Xiao She
  • Liang Li
Original Paper


The functionalization of halloysite nanotubes (HNTs) has attracted much attention in recent years due to the nano-tubular structure and particular features. Here, we report a conductive nanohybrids of HNTs, polyaniline (PANI), and poly(sodium-p-styrenesulfonate) (PSS) with high electrical conductivity (0.11 S/cm) prepared by in situ polymerization and layer-by-layer assembly. The chemical structures and morphologies were characterized by FT-IR, UV–Vis, FE-SEM, and TEM, which confirmed that the layers of PANI, PSS, and PANI were sequentially coated onto the HNTs as expected. A study of cyclic voltammetry suggested the typical pseudocapacitance and good rate performance of the as-prepared nanocomposites. The results of galvanostatic charge/discharge and electrochemical impedance spectroscopy further demonstrated its favorable capacitive behavior and low resistance. The easily fabricated halloysite/polyaniline nanocomposites show great potential as electrode materials for supercapacitors.


PANI Specific Capacitance Electrode Material Electrochemical Impedance Spectroscopy Cyclic Voltammograms Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was financially supported by Outstanding Youth Scientific Innovation Team of Colleges and Universities in Hubei Province (T201406), the Natural Science Foundation of Hubei Province (2014CFB796), and Scientific Research Foundation of Wuhan Institute of Technology (K201508).


  1. 1.
    Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751CrossRefGoogle Scholar
  2. 2.
    Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226CrossRefGoogle Scholar
  3. 3.
    Arcudi F, Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Riela S (2014) Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C 118:15095–15101CrossRefGoogle Scholar
  4. 4.
    Fu H, Wang Y, Chen W, Xiao J (2015) Reinforcement of waterborne polyurethane with chitosan-modified halloysite nanotubes. Appl Surf Sci 346:372–378CrossRefGoogle Scholar
  5. 5.
    Cai N, Dai Q, Wang Z, Luo X, Xue Y, Yu F (2015) Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J Mater Sci 50:1435–1445. doi: 10.1007/s10853-014-8703-4 CrossRefGoogle Scholar
  6. 6.
    Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437–1443CrossRefGoogle Scholar
  7. 7.
    Zheng P, Du Y, Chang PR, Ma X (2015) Amylose–halloysite–TiO2 composites: preparation, characterization and photodegradation. Appl Surf Sci 329:256–261CrossRefGoogle Scholar
  8. 8.
    Dong F, Wang J, Wang Y, Ren S (2012) Synthesis and humidity controlling properties of halloysite/poly(sodium acrylate-acrylamide) composite. J Mater Chem 22:11093–11100CrossRefGoogle Scholar
  9. 9.
    Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, Riela S (2015) Biocompatible poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C 119:8944–8951CrossRefGoogle Scholar
  10. 10.
    Tan WL, Salehabadi A, Mohd Isa MH, Abu Bakar M, Abu Bakar NHH (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132. doi: 10.1007/s10853-015-9443-9 CrossRefGoogle Scholar
  11. 11.
    Liu Y, Jiang X, Li B, Zhang X, Liu T, Yan X, Ding J, Cai Q, Zhang J (2014) Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J Mater Chem A 2:4264–4269CrossRefGoogle Scholar
  12. 12.
    Liang J, Dong B, Ding S, Li C, Li BQ, Li J, Yang G (2014) Facile construction of ultrathin standing α-Ni(OH)2 nanosheets on halloysite nanotubes and their enhanced electrochemical capacitance. J Mater Chem A 2:11299–11304CrossRefGoogle Scholar
  13. 13.
    Liang J, Tan H, Xiao C, Zhou G, Guo S, Ding S (2015) Hydroxyl-riched halloysite clay nanotubes serving as substrate of NiO nanosheets for high-performance supercapacitor. J Power Sources 285:210–216CrossRefGoogle Scholar
  14. 14.
    MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  15. 15.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42CrossRefGoogle Scholar
  16. 16.
    Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos Part B 69:232–236CrossRefGoogle Scholar
  17. 17.
    Jeon JW, Kwon SR, Li F, Lutkenhaus JL (2015) Spray-on polyaniline/poly(acrylic acid) electrodes with enhanced electrochemical stability. ACS Appl Mater Interfaces 7:24150–24158CrossRefGoogle Scholar
  18. 18.
    Wei D, Lin X, Li L, Shang S, Yuen MC, Yan G, Yua X (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836CrossRefGoogle Scholar
  19. 19.
    Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712CrossRefGoogle Scholar
  20. 20.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRefGoogle Scholar
  21. 21.
    Zhou C, Du X, Liu Z, Mai YW, Ringer SP (2011) Multi-holed clay nanotubes and their modification with a polyaniline nanolayer. J Mater Sci 46:446–450. doi: 10.1007/s10853-010-4909-2 CrossRefGoogle Scholar
  22. 22.
    Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255:2091–2097CrossRefGoogle Scholar
  23. 23.
    Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRefGoogle Scholar
  24. 24.
    Liu YS, Nan HM, Cai Q, Li HD (2012) Fabrication of halloysite@polypyrrole composite particles and polypyrrole nanotubes on halloysite templates. J Appl Polym Sci 125:E638–E643CrossRefGoogle Scholar
  25. 25.
    Liu H, Xu B, Jia M, Zhang M, Cao B, Zhao X, Wang Y (2015) Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors. Appl Surf Sci 332:40–46CrossRefGoogle Scholar
  26. 26.
    Fan H, Wang H, Zhao N, Zhang X, Xu J (2012) Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. J Mater Chem 22:2774–2780CrossRefGoogle Scholar
  27. 27.
    Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463CrossRefGoogle Scholar
  28. 28.
    Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485CrossRefGoogle Scholar
  29. 29.
    Liang J, Fan Z, Chen S, Ding S, Yang G (2014) Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26:4354–4360CrossRefGoogle Scholar
  30. 30.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  31. 31.
    Dai T, Jia Y (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558CrossRefGoogle Scholar
  32. 32.
    Guo H, He W, Lu Y, Zhang X (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 92:133–141CrossRefGoogle Scholar
  33. 33.
    Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118:2507–2517CrossRefGoogle Scholar
  34. 34.
    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091CrossRefGoogle Scholar
  35. 35.
    Huang H, Zeng X, Li W, Wang H, Wang Q, Yang Y (2014) Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate. J Mater Chem A 2:16516–16522CrossRefGoogle Scholar
  36. 36.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493CrossRefGoogle Scholar
  37. 37.
    Fan W, Zhang C, Tjiu WW, Pramoda KP, He C, Liu T (2013) Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl Mater Interfaces 5:3382–3391CrossRefGoogle Scholar
  38. 38.
    Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428CrossRefGoogle Scholar
  39. 39.
    Lin LY, Yeh MH, Tsai JT, Huang YH, Sun CL, Ho KC (2013) A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 1:11237–11245CrossRefGoogle Scholar
  40. 40.
    Zhang L, Shi GQ (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115:17206–17212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Huabo Huang
    • 1
  • Junlong Yao
    • 1
  • Hongyan Chen
    • 2
  • Xiaoping Zeng
    • 1
  • Changlian Chen
    • 1
  • Xiao She
    • 1
  • Liang Li
    • 1
  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Materials Science and EngineeringWuhan Institute of TechnologyWuhanChina
  2. 2.School of Materials Science and EngineeringChang’an UniversityXi’anChina

Personalised recommendations