Journal of Materials Science

, Volume 51, Issue 8, pp 4021–4030 | Cite as

Crystallization behaviors and microstructures of poly(butylene succinate-co-adipate)/modified layered double hydroxide nanocomposites

  • Yi-An Chen
  • Gang-Shian Tsai
  • Erh-Chiang Chen
  • Tzong-Ming Wu
Original Paper


A green biodegradable poly[(butylene succinate)-co-adipate] (PBSA) synthesized by polycondensation reaction is solution-mixed with organically modified layered double hydroxide (m-LDH) to fabricate the PBSA/m-LDH nanocomposite. The crystallization behaviors, morphologies, and microstructures of PBSA and PBSA/m-LDH nanocomposite are studied by differential scanning calorimetry, wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). Both WAXD and TEM results demonstrate that most of the layered materials are exfoliated and randomly distributed in the PBSA matrix. The isothermal crystallization kinetics of neat PBA and PBSA/m-LDH nanocomposite are analyzed using the Avrami equation. With the addition of 3 wt% m-LDH into PBSA, the half-time for crystallization of PBSA/m-LDH nanocomposite decreased by 47–76 % for isothermal crystallization at 48–56 °C compared to that of neat PBSA. The value of σσ e for 3 wt% PBSA/m-LDH nanocomposites is the lowest. The microstructure of PBSA/m-LDH nanocomposites identified by SAXS shows that higher crystal layer thickness is achieved with the introduction of 3 wt% m-LDH. These results indicate that the introduction of 3 wt% m-LDH content into PBSA causes a decrease in surface free energy and thus an increase in the polymer chain mobility.


Succinic Acid Layered Double Hydroxide WAXD Isothermal Crystallization Adipic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support provided by Ministry of Science and Technology through the Project MOST 104-2212-E-005-089-MY2 is greatly appreciated.


  1. 1.
    Bandyopadhyay J, Sinha Ray S (2010) The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer 51:1437–1449CrossRefGoogle Scholar
  2. 2.
    Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 74:263–270CrossRefGoogle Scholar
  3. 3.
    Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C (2006) Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym Degrad Stab 91:367–376CrossRefGoogle Scholar
  4. 4.
    Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826CrossRefGoogle Scholar
  5. 5.
    Han SI, Lim JS, Kim DK, Kim MN, Im SS (2008) In situ polymerized poly(butylene succinate)/silica nanocomposites: physical properties and biodegradation. Polym Degrad Stab 93:889–895CrossRefGoogle Scholar
  6. 6.
    Hennous M, Derriche Z, Privas E, Navard P, Verney V, Leroux F (2013) Lignosulfonate interleaved layered double hydroxide: a novel green organoclay for bio-related polymer. Appl Clay Sci 71:42–48CrossRefGoogle Scholar
  7. 7.
    Bandyopadhyay J, Al-Thabaiti SA, Ray SS, Basahel SN, Mokhtar M (2014) Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co adipate] nanocomposites: a high speed differential scanning calorimetry study. Macromol Mater Eng 299:939–952CrossRefGoogle Scholar
  8. 8.
    Chen G, Yoon J-S (2005) Nanocomposites of poly[(butylene succinate)-co-(butylene adipate)] (PBSA) and twice-functionalized organoclay. Polym Int 54:939–945CrossRefGoogle Scholar
  9. 9.
    Ojijo V, Malwela T, Sinha Ray S, Sadiku R (2012) Unique isothermal crystallization phenomenon in the ternary blends of biopolymers polylactide and poly[(butylene succinate)-co-adipate] and nano-clay. Polymer 53:505–518CrossRefGoogle Scholar
  10. 10.
    Ikehara T, Kimura H, Qiu Z (2005) Penetrating spherulitic growth in poly(butylene adipate-co-butylene succinate)/poly(ethylene oxide) blends. Macromolecules 38:5104–5108CrossRefGoogle Scholar
  11. 11.
    Ojijo V, Sinha Ray S, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395–2405CrossRefGoogle Scholar
  12. 12.
    Ojijo V, Cele H, Sinha Ray S (2011) Morphology and properties of polymer composites based on biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend and nanoclay. Macromol Mater Eng 296:865–877CrossRefGoogle Scholar
  13. 13.
    Wu CS (2012) Characterization and biodegradability of polyester bioplastic-based green renewable composites from agricultural residues. Polym Degrad Stab 97:64–71Google Scholar
  14. 14.
    Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277CrossRefGoogle Scholar
  15. 15.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRefGoogle Scholar
  16. 16.
    Chen YA, Chen EC, Wu TM (2015) Organically modified layered zinc phenylphosphonate reinforced stereocomplex-type poly(lactic acid) nanocomposites with highly enhanced mechanical properties and degradability. J Mater Sci 50:7770–7778. doi: 10.1007/s10853-015-9348-7 CrossRefGoogle Scholar
  17. 17.
    Chen YA, Hang YT, Wu TM (2015) Polymorphism and spherulite morphology of poly(1,4-butylene adipate)/organically-modified layered double hydroxide nanocomposites. J Appl Polym Sci. doi: 10.1002/app.42526 Google Scholar
  18. 18.
    Peng H, Han Y, Liu T, Tjiu WC, He C (2010) Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim Acta 502:1–7CrossRefGoogle Scholar
  19. 19.
    Ciou CY, Li SY, Wu TM (2014) Morphology and degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/layered double hydroxides composites. Eur Polym J 59:136–143CrossRefGoogle Scholar
  20. 20.
    Chiang MF, Chen EC, Wu TM (2012) Preparation, mechanical properties and thermal stability of poly(l-lactide)/γ-polyglutamate-modified layered double hydroxide nanocomposites. Polym Degrad Stab 97:995–1001CrossRefGoogle Scholar
  21. 21.
    Lonkar SP, Singh RP (2009) Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites. Thermochim Acta 491:63–70CrossRefGoogle Scholar
  22. 22.
    Hm Chen, Chen J, Ln Shao et al (2013) Comparative study of poly (l-lactide) nanocomposites with organic montmorillonite and carbon nanotubes. J Polym Sci Pol Phys 51:183–196CrossRefGoogle Scholar
  23. 23.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRefGoogle Scholar
  24. 24.
    Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRefGoogle Scholar
  25. 25.
    Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24:6480–6493CrossRefGoogle Scholar
  26. 26.
    Chen YA, Wu TM (2014) Crystallization kinetics of poly(1,4-butylene adipate) with stereocomplexed poly(lactic acid) serving as a nucleation agent. Ind Eng Chem Res 53:16689–16695CrossRefGoogle Scholar
  27. 27.
    Hoffman JD, Weeks JJ (1962) Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A 66:13–28CrossRefGoogle Scholar
  28. 28.
    Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding. Polymer 24:3–26CrossRefGoogle Scholar
  29. 29.
    Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:4340–4352CrossRefGoogle Scholar
  30. 30.
    Lauritzen JI (1973) Effect of a finite substrate length upon polymer crystal lamellar growth rate. J Appl Phys 44:4353–4359CrossRefGoogle Scholar
  31. 31.
    Causin V, Marega C, Saini R, Marigo A, Ferrara A (2007) Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Cal 90:849–857CrossRefGoogle Scholar
  32. 32.
    Strobl G, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 18:1343–1359CrossRefGoogle Scholar
  33. 33.
    Barbi V, Funari SS, Gehrke R, Scharnagl N, Stribeck N (2003) SAXS and the gas transport in polyether-block-polyamide copolymer membranes. Macromolecules 36:749–758CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yi-An Chen
    • 1
  • Gang-Shian Tsai
    • 1
  • Erh-Chiang Chen
    • 1
  • Tzong-Ming Wu
    • 1
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations