Advertisement

Journal of Materials Science

, Volume 52, Issue 9, pp 5038–5047 | Cite as

Mixed polyanion NaCo1−x (VO) x PO4 glass–ceramic cathode: role of ‘Co’ on structural behaviour and electrochemical performance

  • G. Suman
  • Ch. Srinivasa Rao
  • Prasanta Kumar Ojha
  • M. S. Surendra Babu
  • R. Balaji Rao
Original Paper

Abstract

Glass samples with general formula NaCo1−x (VO) x PO4 (x = 0.1, 0.3, 0.5 and 0.7) are synthesized via a simple melt quenching method followed by high-energy ball milling for 30 h to form the homogeneous nanoscaled glass powders. DTA traces of all the glass and glass–ceramic samples indicated exothermic processes confirming selective crystallization induced in the glass network. The formation of major crystalline phase [sodium cobalt pyrophosphate (Na2CoP2O7)] with an ordered layered structure was monitored by X-ray diffraction and the same was justified by SEM images. Structural illustration of major crystalline Na2CoP2O7 phase offered more intra-layer Co–Co distance (7.12 Å) than inter-layer Co–Co distance (5.37 Å) which facilitates two-dimensional Na-ion diffusion pathways to achieve the fast intercalation and de-intercalation phenomenon along the a and c directions. The ionic conductivity was monitored by Impedance analysis and achieved to be highest (6.41 × 10−7 S cm−1) for the glass–ceramic cathode x = 0.3, NaCo1−x (VO) x PO4. The initial discharge capacity for the highest conducting NaCo0.7(VO)0.3PO4 cathode is obtained as 93 mA h g−1 in 0.1 C and had 65% capacity retention even at high rate 10 C.

Keywords

Electrochemical Performance Cathode Material Ceramic Sample Initial Discharge Capacity Sodium Metavanadate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been funded by NAVAL RESEARCH BOARD, DRDO, Govt. of INDIA, Grant No: NRB-311/MAT/13-14. The authors thank Dr. S.K. Martha, Department of Chemistry, IIT Hyderabad for his kind help in acquiring CV studies and discussions.

Compliance with ethical standards

Conflict of interest

R. Balaji Rao has received Grants from NAVAL RESEARCH BOARD, DRDO, Govt. of INDIA, Grant No: NRB-311/MAT/13-14.

References

  1. 1.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRefGoogle Scholar
  2. 2.
    Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770CrossRefGoogle Scholar
  3. 3.
    Tarascon JM (2010) Key challenges in future Li-battery research. Philos Trans R Soc A 368(1923):3227–3241CrossRefGoogle Scholar
  4. 4.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901CrossRefGoogle Scholar
  5. 5.
    Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360CrossRefGoogle Scholar
  6. 6.
    Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158(12):A1307–A1312CrossRefGoogle Scholar
  7. 7.
    Johnson C (2016). Synthesis and evaluation of NaMPO4 (M = Fe, Mn, Co) framework polyanion cathodes for sodium-ion batteries (SIB). In: 18th international meeting on lithium batteries, Ecs, 19–24 JuneGoogle Scholar
  8. 8.
    Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, Julien CM (2011) Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 196(22):9612–9617CrossRefGoogle Scholar
  9. 9.
    Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2):780–787CrossRefGoogle Scholar
  10. 10.
    Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X (2016) Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0. 7Ni0.3-xCoxO2 cathode materials for sodium ion batteries. ACS Appl Mater Interfaces. doi: 10.1021/acsami.6b04073 Google Scholar
  11. 11.
    Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid State Lett 3(4):178–179CrossRefGoogle Scholar
  12. 12.
    Okada S, Sawa SI, Uebou Y, Egashira M, Yamaki JI, Tabuchi M, Kageyama H (2003) Charge-discharge mechanism of LiCoPO4 cathode for rechargeable lithium batteries. Electrochemistry 71(12):1136–1138Google Scholar
  13. 13.
    Xu J, Lee DH, Clément RJ, Yu X, Leskes M, Pell AJ, Meng YS (2014) Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z] O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chem Mater 26(2):1260–1269CrossRefGoogle Scholar
  14. 14.
    Chen CY, Matsumoto K, Nohira T, Hagiwara R (2014) Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte. Electrochem Commun 45:63–66CrossRefGoogle Scholar
  15. 15.
    Kercher AK, Ramey JO, Carroll KJ, Kiggans JO, Dudney NJ, Meisner RA, Veith GM (2014) Mixed polyanion glass cathodes: iron phosphate vanadate glasses. J Electrochem Soc 161(14):A2210–A2215CrossRefGoogle Scholar
  16. 16.
    Kercher AK, Kolopus JA, Carroll KJ, Unocic RR, Kirklin S, Wolverton C, Dudney NJ (2016) Mixed polyanion glass cathodes: glass-state conversion reactions. J Electrochem Soc 163(2):A131–A137CrossRefGoogle Scholar
  17. 17.
    Aoyagi T, Fujieda T, Mitsuishi K, Kawaji J, Toyama T, Kono K, Naito T (2014) V2O5-P2O5-Fe2O3-Li2O glass-ceramics as high-capacity cathode for lithium-ion batteries. Mater Res Soc Symp Proc 1643:13–1643. doi: 10.1557/opl.2014.246 CrossRefGoogle Scholar
  18. 18.
    Barpanda P, Ye T, Nishimura SI, Chung SC, Yamada Y, Okubo M, Yamada A (2012) Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. J Electrochem Commun 24:116–119CrossRefGoogle Scholar
  19. 19.
    Murugan GS, Varma KBR (2002) Lithium borate–strontium bismuth tantalate glass nanocomposite: a novel material for nonlinear optic and ferroelectric applications. J Mater Chem 12(5):1426–1436CrossRefGoogle Scholar
  20. 20.
    Delaizir G, Seznec V, Rozier P, Surcin C, Salles P, Dolle M (2013) Electrochemical performances of vitreous materials in the system Li2O–V2O5–P2O5 as electrode for lithium batteries. Solid State Ionics 237:22–27CrossRefGoogle Scholar
  21. 21.
    Hassaan MY, Salem SM, Moustafa MG (2014) Study of nanostructure and ionic conductivity of Li1.3Nb0.3V1.7(PO4)3 glass ceramics used as cathode material for solid batteries. J Non-Cryst Solids 391:6–11CrossRefGoogle Scholar
  22. 22.
    Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71CrossRefGoogle Scholar
  23. 23.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152CrossRefGoogle Scholar
  24. 24.
    Erragh F, Boukhari A, Elouadi B, Holt EM (1991) Crystal structures of two allotropic forms of Na2CoP2O7. J Cryst Spectrosc 21(3):321–326CrossRefGoogle Scholar
  25. 25.
    Sanz F, Parada C, Rojo JM, Ruiz-Valero C, Saez-Puche R (1999) Studies on tetragonal Na2CoP2O7, a novel ionic conductor. J Solid State Chem 145(2):604–611CrossRefGoogle Scholar
  26. 26.
    Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall Mater 1(1):22–31CrossRefGoogle Scholar
  27. 27.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRefGoogle Scholar
  28. 28.
    Honma T, Sato A, Ito N, Togashi T, Shinozaki K, Komatsu T (2014) Crystallization behavior of sodium iron phosphate glass Na2-xFe1+0.5xP2O7 for sodium ion batteries. J Non-Cryst Solids 404:26–31CrossRefGoogle Scholar
  29. 29.
    Chowdari BVR, Rao GS, Lee GYH (2000) XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics. Solid State Ionics 136:1067–1075CrossRefGoogle Scholar
  30. 30.
    Zhang Q, Wen Z, Liu Y, Song S, Wu X (2009) Na+ ion conductors of glass–ceramics in the system Na1+xAlxGe2−xP3O12 (0.3 ≤ x ≤ 1.0). J Alloys Compd 479(1):494–499CrossRefGoogle Scholar
  31. 31.
    Afyon S, Krumeich F, Mensing C, Borgschulte A, Nesper R (2014) New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses. Sci Rep 4:7113. doi: 10.1038/srep07 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • G. Suman
    • 1
  • Ch. Srinivasa Rao
    • 2
  • Prasanta Kumar Ojha
    • 2
  • M. S. Surendra Babu
    • 3
  • R. Balaji Rao
    • 1
  1. 1.Department of Physics, School of TechnologyGITAM UniversityHyderabadIndia
  2. 2.Naval Materials Research LaboratoryAmbernathIndia
  3. 3.Department of Chemistry, School of TechnologyGITAM UniversityHyderabadIndia

Personalised recommendations