Advertisement

Journal of Materials Science

, Volume 52, Issue 9, pp 5027–5037 | Cite as

Si/iron silicide nanocomposite anodes with furfuryl-alcohol-derived carbon coating for Li-ion batteries

  • Juyoung Jang
  • Inyeong Kang
  • Moon-Soo Kim
  • Jae-Hun Kim
  • Young-Su Lee
  • Kyung-Woo Yi
  • Young Whan Cho
Original Paper

Abstract

A new type of carbon-coated Si/iron silicide nanocomposite anode material for lithium ion batteries is made employing furfuryl alcohol as a carbon precursor. A wet coating technique is applied to cover the surface of ball-milled ferrosilicon powders with polyfurfuryl alcohol resin derived from furfuryl alcohol. To optimize the electrochemical performance of this anode material, the carbonization heat treatment temperature is systematically varied between 600 and 1000 °C. The effects of the carbonization temperature on the physical properties of the carbon-coated nanocomposites, such as the specific surface area and phase composition, and on the electrochemical performance characteristics, such as the initial discharge/charge capacity and capacity retention ratio of coin half-cells made with these nanocomposite anodes, are investigated. The electrochemical performance of the anode during cycling is found to depend strongly on the characteristics of the carbon coating layer, which is significantly affected by the carbonization temperature. An initial discharge capacity of 720 mAh g−1 and a capacity retention of 75% after 300 cycles at 1 C are obtained from the coin half-cell made with the Si/iron silicide nanocomposite carbonized at 1000 °C.

Keywords

Coulombic Efficiency Carbonization Temperature Furfuryl Alcohol Initial Discharge Capacity Nanocomposite Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy, Republic of Korea (10037919).

References

  1. 1.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  2. 2.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  3. 3.
    Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  4. 4.
    Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141CrossRefGoogle Scholar
  5. 5.
    Dey A (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118:1547–1549CrossRefGoogle Scholar
  6. 6.
    Hatchard T, Dahn J (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842CrossRefGoogle Scholar
  7. 7.
    Boukamp B, Lesh G, Huggins R (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–729CrossRefGoogle Scholar
  8. 8.
    Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  9. 9.
    Li H, Huang X, Chen L, Wu Z, Liang Y (1999) A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett 2:547–549CrossRefGoogle Scholar
  10. 10.
    Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49:2146–2149CrossRefGoogle Scholar
  11. 11.
    Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12:3315–3321CrossRefGoogle Scholar
  12. 12.
    Li X, Meduri P, Chen X et al (2012) Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J Mater Chem 22:11014–11017CrossRefGoogle Scholar
  13. 13.
    Jeong G, Kim J-G, Park M-S et al (2014) Core–shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8:2977–2985CrossRefGoogle Scholar
  14. 14.
    Park E, Kim J, Chung DJ, Park MS, Kim H, Kim JH (2016) Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery. ChemSusChem 9:2754–2758CrossRefGoogle Scholar
  15. 15.
    Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48:1579–1587CrossRefGoogle Scholar
  16. 16.
    Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598–A1603CrossRefGoogle Scholar
  17. 17.
    Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147:1245–1250CrossRefGoogle Scholar
  18. 18.
    Umeno T, Fukuda K, Wang H, Dimov N, Iwao T, Yoshio M (2001) Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition. Chem Lett 11:1186–1187CrossRefGoogle Scholar
  19. 19.
    Yi R, Dai F, Gordin ML, Sohn H, Wang D (2013) Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si–C composite Li-ion anodes. Adv Energy Mater 3:1507–1515CrossRefGoogle Scholar
  20. 20.
    Wang H, Yoshio M, Abe T, Ogumi Z (2002) Characterization of carbon-coated natural graphite as a lithium-ion battery anode material. J Electrochem Soc 149:A499–A503CrossRefGoogle Scholar
  21. 21.
    Lee H-Y, Lee S-M (2004) Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochem Commun 6:465–469CrossRefGoogle Scholar
  22. 22.
    Wang C, Wu G, Zhang X, Qi Z, Li W (1998) Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J Electrochem Soc 145:2751–2758CrossRefGoogle Scholar
  23. 23.
    Hasegawa T, Mukai SR, Shirato Y, Tamon H (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42:2573–2579CrossRefGoogle Scholar
  24. 24.
    Lu Z, Liu N, Lee H-W et al (2015) Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9:2540–2547CrossRefGoogle Scholar
  25. 25.
    Wilson A, Dahn J (1995) Lithium insertion in carbons containing nanodispersed silicon. J Electrochem Soc 142:326–332CrossRefGoogle Scholar
  26. 26.
    Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023CrossRefGoogle Scholar
  27. 27.
    Choura M, Belgacem NM, Gandini A (1996) Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules 29:3839–3850CrossRefGoogle Scholar
  28. 28.
    Kim T, Assary RS, Marshall CL, Gosztola DJ, Curtiss LA, Stair PC (2011) Acid-catalyzed furfuryl alcohol Polymerization: characterizations of molecular structure and thermodynamic properties. ChemCatChem 3:1451–1458CrossRefGoogle Scholar
  29. 29.
    Principe M, Martínez R, Ortiz P, Rieumont J (2000) The polymerization of furfuryl alcohol with p-toluenesulfonic acid: photocross-linkeable feature of the polymer. Polímeros 10:08–14CrossRefGoogle Scholar
  30. 30.
    Zarbin AJ, Bertholdo R, Oliveira MA (2002) Preparation, characterization and pyrolysis of poly (furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon 40:2413–2422CrossRefGoogle Scholar
  31. 31.
    Conley RT, Metil I (1963) An investigation of the structure of furfuryl alcohol polycondensates with infrared spectroscopy. J Appl Polym Sci 7:37–52CrossRefGoogle Scholar
  32. 32.
    Herold N, Dietrich T, Grigsby WJ et al (2013) Effect of maleic anhydride content and ethanol dilution on the polymerization of furfuryl alcohol in wood veneer studied by differential scanning calorimetry. BioResources 8:1064–1075CrossRefGoogle Scholar
  33. 33.
    Nishi Y, Wakihara M, Yamamoto O (1998) Lithium ion batteries. Wiley-VCH, WeinheimGoogle Scholar
  34. 34.
    Zhu B, Jin Y, Tan Y et al (2015) Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode. Nano Lett 15:5750–5754CrossRefGoogle Scholar
  35. 35.
    Chen Y, Qian J, Cao Y, Yang H, Ai X (2012) Green synthesis and stable Li-storage performance of FeSi2/Si@C nanocomposite for lithium-ion batteries. ACS appl mater interfaces 4:3753–3758CrossRefGoogle Scholar
  36. 36.
    Massalski TB, Okamoto H, Subramanian P, Kacprzak L, Scott WW (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Materials ParkGoogle Scholar
  37. 37.
    Guo J, Chen X, Wang C (2010) Carbon scaffold structured silicon anodes for lithium-ion batteries. J Mater Chem 20:5035–5040CrossRefGoogle Scholar
  38. 38.
    Ail U, Gorsse S, Perumal S et al (2015) Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5. J Mater Sci 50:6713–6718. doi: 10.1007/s10853-015-9225-4 CrossRefGoogle Scholar
  39. 39.
    Ozaki J-I, Nozawa K, Yamada K et al (2006) Structures, physicochemical properties and oxygen reduction activities of carbons derived from ferrocene-poly (furfuryl alcohol) mixtures. J Appl Electrochem 36:239–247CrossRefGoogle Scholar
  40. 40.
    Fitzer E, Schaefer W, Yamada S (1969) The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon 7:643–648CrossRefGoogle Scholar
  41. 41.
    Buiel E, George A, Dahn J (1998) On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature. J Electrochem Soc 145:2252–2257CrossRefGoogle Scholar
  42. 42.
    Shi B, Liu X-C, Zhu M-X, Yang J-H, Shi E-W (2012) Effect of propane/silane ratio on the growth of 3C-SiC thin films on Si (100) substrates by APCVD. Appl Surf Sci 259:685–690CrossRefGoogle Scholar
  43. 43.
    Xu Y, Yin G, Ma Y, Zuo P, Cheng X (2010) Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J Mater Chem 20:3216–3220CrossRefGoogle Scholar
  44. 44.
    Tan CC, Dalapati GK, Tan HR et al (2015) Crystallization of sputter-deposited amorphous (FeSi2) 1–x Al x thin films. Cryst Growth Des 15:1692–1696CrossRefGoogle Scholar
  45. 45.
    Tang J, Salunkhe RR, Zhang H et al (2016) Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep. doi: 10.1038/srep30295 Google Scholar
  46. 46.
    Li G, Lu Z, Huang B et al (1996) Raman scattering investigation of carbons obtained by heat treatment of a polyfurfuryl alcohol. Solid State Ionics 89:327–331CrossRefGoogle Scholar
  47. 47.
    Hwang Y, Kim M, Kim J (2014) Effect of Al2O3 coverage on SiC particles for electrically insulated polymer composites with high thermal conductivity. RSC Adv 4:17015–17021CrossRefGoogle Scholar
  48. 48.
    Li H-H, Wang J-W, Wu X-L et al (2014) A novel approach to prepare Si/C nanocomposites with yolk–shell structures for lithium ion batteries. RSC Adv 4:36218–36225CrossRefGoogle Scholar
  49. 49.
    Wang Z, Lu Z, Huang X, Xue R, Chen L (1998) Chemical and crystalline structure characterizations of polyfurfuryl alcohol pyrolyzed at 600 C. Carbon 36:51–59CrossRefGoogle Scholar
  50. 50.
    Xing W, Xue J, Dahn J (1996) Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries. J Electrochem Soc 143:3046–3052CrossRefGoogle Scholar
  51. 51.
    Buiel E, Dahn J (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130CrossRefGoogle Scholar
  52. 52.
    Zheng T, Xue J, Dahn J (1996) Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater 8:389–393CrossRefGoogle Scholar
  53. 53.
    Burket CL, Rajagopalan R, Marencic AP, Dronvajjala K, Foley HC (2006) Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon. Carbon 44:2957–2963CrossRefGoogle Scholar
  54. 54.
    Ozaki J-I, Mitsui M, Nishiyama Y, Cashion JD, Brown LJ (1998) Effects of ferrocene on production of high performance carbon electrodes from poly (furfuryl alcohol). Chem Mater 10:3386–3392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Juyoung Jang
    • 1
    • 2
  • Inyeong Kang
    • 2
    • 3
  • Moon-Soo Kim
    • 4
  • Jae-Hun Kim
    • 4
  • Young-Su Lee
    • 2
  • Kyung-Woo Yi
    • 1
  • Young Whan Cho
    • 2
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.High Temperature Energy Materials Research CenterKorea Institute of Science and TechnologySeoulSouth Korea
  3. 3.Department of Materials Science and EngineeringYonsei UniversitySeoulSouth Korea
  4. 4.School of Advanced Materials EngineeringKookmin UniversitySeoulSouth Korea

Personalised recommendations