Journal of Materials Science

, Volume 52, Issue 9, pp 4934–4943 | Cite as

Experimental and theoretical analysis of electronic and optical properties of MgWO4

  • Prabal Dev Bhuyan
  • Deobrat Singh
  • Shivam Kansara
  • Pritam Yadav
  • Sanjeev K. Gupta
  • Yogesh Sonvane
  • Sanjeeb K. Rout
  • Ela Sinha
Original Paper


In the present work, magnesium tungstate (MgWO4) was synthesized by solid-state reaction method. The MgWO4 crystal was observed to exhibit wolframite-like monoclinic structure with space group P2/c (No. 13) from X-ray diffraction analysis. The crystal shapes were identified using a scanning electron microscope and ultraviolet–visible technique was employed to determine the band gap of the material which came out to be 4.17 eV. Blue photoluminescence emission was observed for this material. Electronic structures and optical properties of this crystal were determined by the first principles quantum mechanical calculations based on density functional theory. The band gap from the electronic band structure came out to be 3.39 eV, which indicated a good correlation between the experimental and theoretical band gap values. The refractive index of MgWO4 was calculated to be 1.52, and from the reflectivity curve for MgWO4, reflectivity was observed to be 77.8%. These properties of the material could find applications as scintillators, laser host materials, phosphor, and luminescent materials.


Dielectric Function Electron Energy Loss Spectroscopy Random Phase Approximation Electronic Band Structure Valance Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kumar RD, Karuppuchamy S (2015) Synthesis and characterization of nanostructured Zn-WO3 and ZnWO4 by simple solution growth technique. J Mater Sci 26(5):3256–3261. doi:  10.1007/s10854-015-2824-7 Google Scholar
  2. 2.
    Ruiz-Fuertes J, Errandonea D, López-Moreno S, González J, Gomis O, Vilaplana R, Manjón FJ, Muñoz A, Rodríguez-Hernández P, Friedrich A, Tupitsyna IA (2011) High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: comparison with isomorphic compounds. Phys Rev B 83(21):214112CrossRefGoogle Scholar
  3. 3.
    Mikhailik VB, Kraus H, Kapustyanyk V, Panasyuk M, Prots Y, Tsybulskyi V, Vasylechko L (2008) Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system. J Phys 20(36):365219Google Scholar
  4. 4.
    Gancheva M, Naydenov A, Iordanova R, Nihtianova D, Stefanov P (2015) Mechanochemically assisted solid state synthesis, characterization and catalytic properties of MgWO4. J Mater Sci 50(9):3447–3456. doi:  10.1007/s10853-015-8904-5 CrossRefGoogle Scholar
  5. 5.
    Krutyak N, Mikhailin VV, Spassky D, Tupitsyna IA and Dubovik AM (2012) Luminescent properties of MgWO4 crystals, oxide materials for electronic engineering (OMEE). In: 2012 IEEE international conference on, Lviv, Ukraine, 235–236Google Scholar
  6. 6.
    Kim ES, Jeon CJ, Clem PG (2012) Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J Am Ceram Soc 95(9):2934–2938CrossRefGoogle Scholar
  7. 7.
    Tamaki J, Fujii T, Fujimori K, Miura N, Yamazoe N (1995) Application of metal tungstate-carbonate composite to nitrogen oxides sensor operative at elevated temperature. Sens Actuat B 25(1):396–399CrossRefGoogle Scholar
  8. 8.
    Chang LL, Scroger MG, Phillips B (1966) Alkaline-earth tungstates: equilibrium and stability in the M–W–O systems. J Am Ceram Soc 49(7):385–390CrossRefGoogle Scholar
  9. 9.
    Blasse G, Dirksen GJ, Hazenkamp M, Günter JR (1987) The luminescence of magnesium tungstate dihydrate, MgWO4·2H2O. Mater Res Bull 22(6):813–817CrossRefGoogle Scholar
  10. 10.
    Günter JR, Amberg M (1989) “High-temperature” magnesium tungstate, MgWO4, prepared at moderate temperature. Solid State Ionics 32:141–146CrossRefGoogle Scholar
  11. 11.
    Wannapop S, Thongtem T, Thongtem S (2012) Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning–calcination combinations. Appl Surf Sci 258(11):4971–4976CrossRefGoogle Scholar
  12. 12.
    Pullar RC, Farrah S, McN Alford N (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramic. J Eur Ceram Soc 27:1059–1063CrossRefGoogle Scholar
  13. 13.
    Im DH, Ju HS, Kim ES (2012) Microwave dielectric properties of ceramic/semicrystalline polymer composites. Jpn J Appl Phys 51(9S2):09MD16CrossRefGoogle Scholar
  14. 14.
    Cavalli E, Belletti A, Brik MG (2008) Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals. J Phys Chem Solids 69(1):29–34CrossRefGoogle Scholar
  15. 15.
    Danevich FA, Chernyak DM, Dubovik AM, Grinyov BV, Henry S, Kraus H, Kudovbenko VM, Mikhailik VB, Nagornaya LL, Podviyanuk RB, Polischuk OG (2009) MgWO4: a new crystal scintillator. Nucl Instrum Methods Phys Res 608(1):107–115CrossRefGoogle Scholar
  16. 16.
    Ilhan S, Izotova SG, Komlev AA (2015) Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram Int 41(1):577–585. doi:  10.1007/s10854-013-1486-6 CrossRefGoogle Scholar
  17. 17.
    He HY, Wang Y (2013) Comparative study on photoluminescence efficiencies of Sm3+-doped MeWO4 (Me = Ba, Sr, Ca, and Mg) phosphors. J Mater Sci 24(12):4847–4852Google Scholar
  18. 18.
    Hwang DW, Kim J, Park TJ, Lee JS (2002) Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catal Lett 80(1–2):53–57CrossRefGoogle Scholar
  19. 19.
    Kim DW, Cho IS, Shin SS, Lee S, Noh TH, Kim DH, Jung HS, Hong KS (2011) Electronic band structures and photovoltaic properties of MWO4 (M = Zn, Mg, Ca, Sr) compounds. J Solid State Chem 184(8):2103–2107CrossRefGoogle Scholar
  20. 20.
    Zhang L, Chen W, Lu J, Lin H, Li L, Wang G, Zhang G, Lin Z (2016) Characterization of growth, optical properties and laser performance of monoclinic Yb: MgWO4 crystal. Opt Mater Express 6(5):1627–1634CrossRefGoogle Scholar
  21. 21.
    Ruiz-Fuertes J, López-Moreno S, López-Solano J, Errandonea D, Segura A, Lacomba-Perales R, Muñoz A, Radescu S, Rodríguez-Hernández P, Gospodinov M, Nagornaya LL, Tu CY (2012) Pressure effects on the electronic and optical properties of AWO4 wolframites (A = Cd, Mg, Mn, and Zn): the distinctive behavior of multiferroic MnWO4. Phys Rev B 86:125202CrossRefGoogle Scholar
  22. 22.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys 21(39):395502Google Scholar
  23. 23.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  24. 24.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188CrossRefGoogle Scholar
  25. 25.
    Hellmann H (1937) Einführung in die Quantum Chemie: Deuticke, Leipzig (Germany)Google Scholar
  26. 26.
    Feynman RP (1939) Forces in molecules. Phys Rev 56(4):340CrossRefGoogle Scholar
  27. 27.
    Parida S, Satapathy A, Sinha E, Bisen A, Rout SK (2015) Effect of neodymium on optical bandgap and microwave dielectric properties of barium zirconate ceramic. Metall Mater Trans A 46(3):1277–1286CrossRefGoogle Scholar
  28. 28.
    Blasse G, Powell KC (1980) Structure and bonding, vol 42. Springer, HeidelbergGoogle Scholar
  29. 29.
    Lammers MJJ, Blasse G, Robertson DS (1981) The luminescence of cadmium tungstate (CdWO4). Phys Status Solidi A 63(2):569–572CrossRefGoogle Scholar
  30. 30.
    Ovechkin AE, Ryzhikov VD, Tamulaitis G, Žukauskas A (1987) Luminescence of ZnWO4 and CdWO4 crystals. Phys Status Solidi A 103(1):285–290CrossRefGoogle Scholar
  31. 31.
    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Linear optical properties in the projector-augmented wave methodology. Phys Rev B 73(4):045112CrossRefGoogle Scholar
  32. 32.
    Fox M (2001) Optical properties of solids. Oxford master series in condensed matter physics, pp 76–78Google Scholar
  33. 33.
    Singh D, Gupta SK, Sonvane Y, Lukačević I (2016) Antimonene: a monolayer material for ultraviolet optic nanodevices. J Mater Chem C 4:6386–6390CrossRefGoogle Scholar
  34. 34.
    Maqbool M, Kordesch ME, Kayani A (2009) Enhanced cathodoluminescence from an amorphous AlN: holmium phosphor by co-doped Gd+3 for optical devices applications. J Opt Soc Am B 26(5):998–1001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Computational Materials and Nanoscience Group, Department of Physics and ElectronicsSt. Xavier’s CollegeAhmedabadIndia
  2. 2.Department of Applied PhysicsS.V. National Institute of TechnologySuratIndia
  3. 3.Department of PhysicsBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations