Skip to main content
Log in

A kind of Bi1−x Er x FeO3 films with potential excellent multiferroic performances

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi1−x Er x FeO3 (BE x FO, x = 0.07–0.12) films have been deposited on fluorine-doped SnO2 (FTO) substrates by a chemical solution deposition method (CSD). The structure and multiferroic properties were investigated. The results indicate that there is a structural transition from the typical rhombohedral-R3c:H (BiFeO3) to two-phase coexistence of rhombohedral-R3c:H and rhombohedral-R3m:R (BE x FO). The abundant Fe2+ are observed in BE x FO, which induces the larger leakage current. The BE0.09FO shows the ferroelectric switching current of 1.42 × 10−2 A and the enhanced magnetization (saturation magnetization M s  ~ 2.60 emu/cm3). From the investigation, the BE x FO films will be expected to show the great multiferroic properties after reducing the leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gabbasova ZV, Kuz’min MD, Zvezdin AK, Dubenko IS, Murashov VA, Rakov DN, Krynetsky IB (1991) Bi1–xRxFeO3 (R = rare earth): a family of novel magnetoelectrics. Phys Lett A 158:491–498

    Article  Google Scholar 

  2. Lahmar A, Habouti S, Dietze M, Solterbeck C-H, Es-Souni M (2009) Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Appl Phys Lett 94:012903

    Article  Google Scholar 

  3. Xing WY, Ma Y, Bai YL, Zhao SF (2015) Enhanced ferromagnetism of Er-doped BiFeO3 thin films derived from rhombohedral-to-orthorhombic phase transformations. Mater Lett 161:216–219

    Article  Google Scholar 

  4. Pandit P, Satapathy S, Sharma P, Gupta PK, Yusuf SM, Sathe VG (2011) Structural, dielectric and multiferroic properties of Er and La substituted BiFeO3 ceramics. Bull Mater Sci 34:899–905

    Article  Google Scholar 

  5. Liu YQ, Zhang J, Wu YH, Zhang YJ, Wei MB, Yang JH (2013) Enhancement of magnetization in Er doped BiFeO3 thin Film. J Sol-Gel Sci Technol 67:1–7

    Article  Google Scholar 

  6. Nayek C, Tamilselvan A, Thirmal Ch, Murugavel P, Balakumar S (2014) Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite. J Appl Phys 115:073902

    Article  Google Scholar 

  7. Zhao JG, Liu SJ, Zhang WY, Liu ZJ, Liu ZL (2013) Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J Nanopart Res 15:1969

    Article  Google Scholar 

  8. Mukherjee A, Banerjee M, Basu S, Mukadam MD, Yusuf SM, Pal M (2015) Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles. Mater Chem Phys 162:140–148

    Article  Google Scholar 

  9. Singh SK, Tomy CV, Era T, Itoh M, Ishiwara H (2012) Improved multiferroic properties in Sm-doped BiFeO3 thin films deposited using chemical solution deposition method. J Appl Phys 111:102801

    Article  Google Scholar 

  10. Kothari D, Reddy VR, Sathe VG, Gupta A, Banerjee A, Awasthi AM (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO 3. J Magn Magn Mater 320(3):548–552

    Article  Google Scholar 

  11. Lobo RPSM, Moreira RL, Lebeugle D, Colson D (2007) Infrared phonon dynamics of a multiferroic BiFeO3 single crystal. Phys. Rev. B 76:172105

    Article  Google Scholar 

  12. Rao TD, Ranjith R, Asthana S (2014) Enhanced magnetization and improved insulating character in Eu substituted BiFeO3. J Appl Phys 115:124110

    Article  Google Scholar 

  13. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  14. Qi Xiaoding, Dho Joonghoe, Tomov Rumen, Blamire Mark G, MacManus-Driscoll Judith L (2005) Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl Phys Lett 86:062903

    Article  Google Scholar 

  15. Raghavan CM, Kim JW, Kim SS (2013) Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film. Ceram Int 39:3563–3568

    Article  Google Scholar 

  16. Chiu FC, Lin ZH, Chang CW, Wang CC, Chuang KF, Huang CY, Lee JY, Hwang HL (2005) Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure. J Appl Phys 97:034506

    Article  Google Scholar 

  17. Yang CH, Wu HT, Yang F, Hu GD (2014) Non-lead Ce: Na0.5Bi0.5TiO3-BiFeO3 solid solution thin film with significantly reduced leakage current and large polarization. Ceram Int 40:4753–4757

    Article  Google Scholar 

  18. Chen SW, Wu JM (2010) Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Films 519:499–504

    Article  Google Scholar 

  19. Schenk T, Yurchuk E, Mueller S, Schroeder U, Starschich S, Böttger U, Mikolajick T (2014) About the deformation of ferroelectric hystereses. Appl Phys Rev 1:041103

    Article  Google Scholar 

  20. Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401–060404

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project of the National Natural Science Foundation of China (Grant No. 51372145); the Academic Leaders Funding Scheme of Shaanxi University of Science & Technology (2013XSD06); the Graduate Innovation Fund of Shaanxi University of Science & Technology (SUST-A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Tan, G., Ren, H. et al. A kind of Bi1−x Er x FeO3 films with potential excellent multiferroic performances. J Mater Sci 52, 4903–4909 (2017). https://doi.org/10.1007/s10853-016-0725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0725-7

Keywords

Navigation