Skip to main content
Log in

Structure and upconversion luminescence investigation of cubic Y3.2Yb0.4Er0.08Al0.32F12 codoped with Mg2+/Zn2+/Cu2+

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report the divalent ions Mg2+, Zn2+, and Cu2+ as dopants to manipulate the crystal field asymmetry in a new cubic Y3.2Yb0.4Er0.08Al0.32F12 phase which features two different coordination sites for rare earth ions. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and fluorescence spectrophotometer were employed for the crystal structure analysis and luminescence performance investigation. Results reveal that the phase transition from cubic to orthogonal of Y3.2Yb0.4Er0.08Al0.32F12 is promoted by Mg2+ doping. Among Mg2+, Zn2+, and Cu2+, Mg2+ is found to be the most effective dopant for the upconversion performance enhancement. The crystal lattice structure asymmetry increases with the rising of Mg2+ doping concentration and reaches the peak when 6 mol% Mg2+ is introduced; correspondingly, the brightness of 408 and 654 nm emissions are strikingly enhanced over 20 times, and the lifetime of 540 nm emission is shortened to half of that in the Mg2+-free sample. The investigation results establish the understanding of divalent ions as dopants for adjusting upconversion luminescence performance and may be helpful for researchers to develop quick responsive upconversion luminescence materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Scheps R (1996) Upconversion laser processes. Prog Quantum Electron 20(4):271–358

    Article  Google Scholar 

  2. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173

    Article  Google Scholar 

  3. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989

    Article  Google Scholar 

  4. Xu M, Chen DQ, Huang P, Wan ZY, Zhou Y, Ji ZG (2016) A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J Mater Chem C 4(27):6516–6524

    Article  Google Scholar 

  5. Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349

    Article  Google Scholar 

  6. Hu H, Chen ZG, Cao TY, Zhang Q, Yu MX, Li FY, Yi T, Huang CH (2008) Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence. Nanotechnology 19(37):375702

    Article  Google Scholar 

  7. Yang D, Kang X, Ma P, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34(5):1601–1612

    Article  Google Scholar 

  8. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120

    Article  Google Scholar 

  9. Vetrone F, Naccache R, Zamarron A, de la Fuente AJ, Sanz-Rodriguez F, Maestro LM, Rodriguez EM, Jaque D, Sole JG, Capobianco JA (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258

    Article  Google Scholar 

  10. Achatz DE, Ali R, Wolfbeis OS (2011) Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Luminescence Appl Sens Sci 300:29–50

    Article  Google Scholar 

  11. Chen DQ, Xu M, Huang P (2016) Core@shell upconverting nanoarchitectures for luminescent sensing of temperature. Sens Actuators B Chem 231:576–583

    Article  Google Scholar 

  12. Li TG, Liu SW, Zhang HP, Wang EH, Song LJ, Wang P (2011) Ultraviolet upconversion luminescence in Y2O3:Yb3+ , Tm3+ nanocrystals and its application in photocatalysis. J Mater Sci 46(9):2882–2886. doi:10.1007/s10853-010-5162-4

    Article  Google Scholar 

  13. Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core-shell nanophosphor with enhanced NIR-visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J Nanopart Res 13(12):6837–6846

    Article  Google Scholar 

  14. Shalav A, Richards BS, Green MA (2007) Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol Energy Mater Sol Cells 91(9):829–842

    Article  Google Scholar 

  15. Aouani H, Rahmani M, Navarro-Cia M, Maier SA (2014) Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9(4):290–294

    Article  Google Scholar 

  16. Meng C, Meng GZ, Song ZF (2001) An effect enhancement mechanism of up-conversion luminescence—up-conversion sensitization. Spectrosc Spect Anal 21(2):142–146

    Google Scholar 

  17. Wang XF, Yan XH, Kan CX, Ma KL, Xiao Y, Xiao SG (2010) Enhancement of blue emission in beta-NaYbF4:Tm3+/Nd3+ nanophosphors synthesized by nonclosed hydrothermal synthesis method. Appl Phys B 101(3):623–629

    Article  Google Scholar 

  18. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3 + , phosphors of controlled size and morphology. Adv Mater 17(17):2119–2126

    Article  Google Scholar 

  19. Wu WW, Chen DQ, Zhou Y, Wan ZY, Ji ZG (2016) Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. J Alloys Compd 682:275–283

    Article  Google Scholar 

  20. Stouwdam JW, van Veggel F (2004) Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 20(26):11763–11771

    Article  Google Scholar 

  21. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10(12):968–973

    Article  Google Scholar 

  22. Chen DQ, Liu L, Huang P, Ding MY, Zhong JS, Ji ZG (2015) Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core shell nanoarchitecture. J Phys Chem Lett 6(14):2833–2840

    Article  Google Scholar 

  23. Chen D, Huang P (2014) Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core. Dalton Trans 43(29):11299–11304

    Article  Google Scholar 

  24. Wang J, Deng R, MacDonald MA, Chen B, Yuan J, Wang F, Chi D, Hor TSA, Zhang P, Liu G, Han Y, Liu X (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13(2):157–162

    Article  Google Scholar 

  25. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2 + dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231

    Article  Google Scholar 

  26. Huang Q, Yu J, Ma E, Lin K (2010) Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/E(3+/Yb3+ tridoped NaYF4. J Phys Chem C 114(10):4719–4724

    Article  Google Scholar 

  27. Chen DQ, Chen Y, Lu HW, Ji ZG (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53(16):8638–8645

    Article  Google Scholar 

  28. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065

    Article  Google Scholar 

  29. Chen DQ, Yu YL, Huang F, Huang P, Yang AP, Wang YS (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132(29):9976–9978

    Article  Google Scholar 

  30. Huang Q, Yu H, Ma E, Zhang X, Cao W, Yang C, Yu J (2015) Upconversion effective enhancement by producing various coordination surroundings of rare-earth ions. Inorg Chem 54(6):2643–2651

    Article  Google Scholar 

  31. Judd BR (1962) Optical absorption intensities of rare earth ions. Phys Rev 127:750–761

    Article  Google Scholar 

  32. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520

    Article  Google Scholar 

  33. Dou QQ, Zhang Y (2011) Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 27(21):13236–13241

    Article  Google Scholar 

  34. Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4(11):2191–2196

    Article  Google Scholar 

  35. Hehlen MP, Cockroft NJ, Gosnell TR, Bruce AJ (1997) Spectroscopic properties of Er3+ - and Yb3+ -doped soda-lime silicate and aluminosilicate glasses. Phys Rev B 56(15):9302–9318

    Article  Google Scholar 

  36. Fisher BR, Eisler HJ, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J Phys Chem B 108(1):143–148

    Article  Google Scholar 

  37. Yu H, Cao W, Huang Q, Ma E, Zhang X, Yu J (2013) Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: enhanced emission intensity and reduced decay time. J Solid State Chem 207:170–177

    Article  Google Scholar 

  38. Yu H, Yu J (2013) Inhibiting emission quenching in (Y0.1Yb0.05Er0.005Al)2O3 by Sc3+ co-doping to enhance upconversion luminescence. J Lumin 137:274–281

    Article  Google Scholar 

  39. Richardson FS (1980) Selection-rules for lanthandide opticlal-activity. Inorg Chem 19(9):2806–2812

    Article  Google Scholar 

  40. Poluektov NS, Kononenko LI, Veltyukova SV, Gava SA, Drobyazko VN (1975) Supersensitive transitions in samarium and europium ion luminescence spectra in solutions of some complexes. Dokl Akad Nauk SSSR 220(5):1133–1136

    Google Scholar 

  41. Poluektov NS, Alakaeva LA, Tishchenko MA (1972) Intensity of supersensitive transitions of Nd3+, Ho3+ and Er3+ ions in some complexes with different numbers of ligands. Zh Prikl Spektrosk 17(5):819–822

    Google Scholar 

  42. Gomez S, Urra I, Valiente R, Rodriguez F (2011) Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation. Sol Energy Mater Sol Cells 95(8):2018–2022

    Article  Google Scholar 

  43. Huang Q, Yu H, Zhang X, Cao W, Yu J (2016) Upconversion performance enhancement of NaYF4:Yb/Tm by codoping Hf4+ as energy migrator. Acta Chim Sinica 74(2):191–198

    Article  Google Scholar 

Download references

Acknowledgement

We thank the Engineers, Dr. He Yunhui and Dr. Zhang Xinqi, for the XPS and TEM measurement. This work was supported by Fuzhou university Scientific Reseach foundation (No. 510189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q. Structure and upconversion luminescence investigation of cubic Y3.2Yb0.4Er0.08Al0.32F12 codoped with Mg2+/Zn2+/Cu2+ . J Mater Sci 52, 4810–4819 (2017). https://doi.org/10.1007/s10853-016-0716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0716-8

Keywords

Navigation