Advertisement

Journal of Materials Science

, Volume 52, Issue 9, pp 4810–4819 | Cite as

Structure and upconversion luminescence investigation of cubic Y3.2Yb0.4Er0.08Al0.32F12 codoped with Mg2+/Zn2+/Cu2+

  • Qingming Huang
Original Paper
  • 200 Downloads

Abstract

In this paper, we report the divalent ions Mg2+, Zn2+, and Cu2+ as dopants to manipulate the crystal field asymmetry in a new cubic Y3.2Yb0.4Er0.08Al0.32F12 phase which features two different coordination sites for rare earth ions. X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and fluorescence spectrophotometer were employed for the crystal structure analysis and luminescence performance investigation. Results reveal that the phase transition from cubic to orthogonal of Y3.2Yb0.4Er0.08Al0.32F12 is promoted by Mg2+ doping. Among Mg2+, Zn2+, and Cu2+, Mg2+ is found to be the most effective dopant for the upconversion performance enhancement. The crystal lattice structure asymmetry increases with the rising of Mg2+ doping concentration and reaches the peak when 6 mol% Mg2+ is introduced; correspondingly, the brightness of 408 and 654 nm emissions are strikingly enhanced over 20 times, and the lifetime of 540 nm emission is shortened to half of that in the Mg2+-free sample. The investigation results establish the understanding of divalent ions as dopants for adjusting upconversion luminescence performance and may be helpful for researchers to develop quick responsive upconversion luminescence materials.

Keywords

Undoped Sample NaYF4 Upconversion Luminescence Upconversion Emission Luminescence Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We thank the Engineers, Dr. He Yunhui and Dr. Zhang Xinqi, for the XPS and TEM measurement. This work was supported by Fuzhou university Scientific Reseach foundation (No. 510189).

References

  1. 1.
    Scheps R (1996) Upconversion laser processes. Prog Quantum Electron 20(4):271–358CrossRefGoogle Scholar
  2. 2.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173CrossRefGoogle Scholar
  3. 3.
    Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976–989CrossRefGoogle Scholar
  4. 4.
    Xu M, Chen DQ, Huang P, Wan ZY, Zhou Y, Ji ZG (2016) A dual-functional upconversion core@shell nanostructure for white-light-emission and temperature sensing. J Mater Chem C 4(27):6516–6524CrossRefGoogle Scholar
  5. 5.
    Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349CrossRefGoogle Scholar
  6. 6.
    Hu H, Chen ZG, Cao TY, Zhang Q, Yu MX, Li FY, Yi T, Huang CH (2008) Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence. Nanotechnology 19(37):375702CrossRefGoogle Scholar
  7. 7.
    Yang D, Kang X, Ma P, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34(5):1601–1612CrossRefGoogle Scholar
  8. 8.
    Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120CrossRefGoogle Scholar
  9. 9.
    Vetrone F, Naccache R, Zamarron A, de la Fuente AJ, Sanz-Rodriguez F, Maestro LM, Rodriguez EM, Jaque D, Sole JG, Capobianco JA (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6):3254–3258CrossRefGoogle Scholar
  10. 10.
    Achatz DE, Ali R, Wolfbeis OS (2011) Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Luminescence Appl Sens Sci 300:29–50CrossRefGoogle Scholar
  11. 11.
    Chen DQ, Xu M, Huang P (2016) Core@shell upconverting nanoarchitectures for luminescent sensing of temperature. Sens Actuators B Chem 231:576–583CrossRefGoogle Scholar
  12. 12.
    Li TG, Liu SW, Zhang HP, Wang EH, Song LJ, Wang P (2011) Ultraviolet upconversion luminescence in Y2O3:Yb3+ , Tm3+ nanocrystals and its application in photocatalysis. J Mater Sci 46(9):2882–2886. doi: 10.1007/s10853-010-5162-4 CrossRefGoogle Scholar
  13. 13.
    Khan AF, Yadav R, Mukhopadhya PK, Singh S, Dwivedi C, Dutta V, Chawla S (2011) Core-shell nanophosphor with enhanced NIR-visible upconversion as spectrum modifier for enhancement of solar cell efficiency. J Nanopart Res 13(12):6837–6846CrossRefGoogle Scholar
  14. 14.
    Shalav A, Richards BS, Green MA (2007) Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol Energy Mater Sol Cells 91(9):829–842CrossRefGoogle Scholar
  15. 15.
    Aouani H, Rahmani M, Navarro-Cia M, Maier SA (2014) Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol 9(4):290–294CrossRefGoogle Scholar
  16. 16.
    Meng C, Meng GZ, Song ZF (2001) An effect enhancement mechanism of up-conversion luminescence—up-conversion sensitization. Spectrosc Spect Anal 21(2):142–146Google Scholar
  17. 17.
    Wang XF, Yan XH, Kan CX, Ma KL, Xiao Y, Xiao SG (2010) Enhancement of blue emission in beta-NaYbF4:Tm3+/Nd3+ nanophosphors synthesized by nonclosed hydrothermal synthesis method. Appl Phys B 101(3):623–629CrossRefGoogle Scholar
  18. 18.
    Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3 + , phosphors of controlled size and morphology. Adv Mater 17(17):2119–2126CrossRefGoogle Scholar
  19. 19.
    Wu WW, Chen DQ, Zhou Y, Wan ZY, Ji ZG (2016) Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. J Alloys Compd 682:275–283CrossRefGoogle Scholar
  20. 20.
    Stouwdam JW, van Veggel F (2004) Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 20(26):11763–11771CrossRefGoogle Scholar
  21. 21.
    Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10(12):968–973CrossRefGoogle Scholar
  22. 22.
    Chen DQ, Liu L, Huang P, Ding MY, Zhong JS, Ji ZG (2015) Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core shell nanoarchitecture. J Phys Chem Lett 6(14):2833–2840CrossRefGoogle Scholar
  23. 23.
    Chen D, Huang P (2014) Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core. Dalton Trans 43(29):11299–11304CrossRefGoogle Scholar
  24. 24.
    Wang J, Deng R, MacDonald MA, Chen B, Yuan J, Wang F, Chi D, Hor TSA, Zhang P, Liu G, Han Y, Liu X (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13(2):157–162CrossRefGoogle Scholar
  25. 25.
    Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2 + dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24(9):1226–1231CrossRefGoogle Scholar
  26. 26.
    Huang Q, Yu J, Ma E, Lin K (2010) Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/E(3+/Yb3+ tridoped NaYF4. J Phys Chem C 114(10):4719–4724CrossRefGoogle Scholar
  27. 27.
    Chen DQ, Chen Y, Lu HW, Ji ZG (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53(16):8638–8645CrossRefGoogle Scholar
  28. 28.
    Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065CrossRefGoogle Scholar
  29. 29.
    Chen DQ, Yu YL, Huang F, Huang P, Yang AP, Wang YS (2010) Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc 132(29):9976–9978CrossRefGoogle Scholar
  30. 30.
    Huang Q, Yu H, Ma E, Zhang X, Cao W, Yang C, Yu J (2015) Upconversion effective enhancement by producing various coordination surroundings of rare-earth ions. Inorg Chem 54(6):2643–2651CrossRefGoogle Scholar
  31. 31.
    Judd BR (1962) Optical absorption intensities of rare earth ions. Phys Rev 127:750–761CrossRefGoogle Scholar
  32. 32.
    Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520CrossRefGoogle Scholar
  33. 33.
    Dou QQ, Zhang Y (2011) Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 27(21):13236–13241CrossRefGoogle Scholar
  34. 34.
    Yi GS, Lu HC, Zhao SY, Yue G, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4(11):2191–2196CrossRefGoogle Scholar
  35. 35.
    Hehlen MP, Cockroft NJ, Gosnell TR, Bruce AJ (1997) Spectroscopic properties of Er3+ - and Yb3+ -doped soda-lime silicate and aluminosilicate glasses. Phys Rev B 56(15):9302–9318CrossRefGoogle Scholar
  36. 36.
    Fisher BR, Eisler HJ, Stott NE, Bawendi MG (2004) Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J Phys Chem B 108(1):143–148CrossRefGoogle Scholar
  37. 37.
    Yu H, Cao W, Huang Q, Ma E, Zhang X, Yu J (2013) Upcoversion performance improvement of NaYF4:Yb, Er by Sn codoping: enhanced emission intensity and reduced decay time. J Solid State Chem 207:170–177CrossRefGoogle Scholar
  38. 38.
    Yu H, Yu J (2013) Inhibiting emission quenching in (Y0.1Yb0.05Er0.005Al)2O3 by Sc3+ co-doping to enhance upconversion luminescence. J Lumin 137:274–281CrossRefGoogle Scholar
  39. 39.
    Richardson FS (1980) Selection-rules for lanthandide opticlal-activity. Inorg Chem 19(9):2806–2812CrossRefGoogle Scholar
  40. 40.
    Poluektov NS, Kononenko LI, Veltyukova SV, Gava SA, Drobyazko VN (1975) Supersensitive transitions in samarium and europium ion luminescence spectra in solutions of some complexes. Dokl Akad Nauk SSSR 220(5):1133–1136Google Scholar
  41. 41.
    Poluektov NS, Alakaeva LA, Tishchenko MA (1972) Intensity of supersensitive transitions of Nd3+, Ho3+ and Er3+ ions in some complexes with different numbers of ligands. Zh Prikl Spektrosk 17(5):819–822Google Scholar
  42. 42.
    Gomez S, Urra I, Valiente R, Rodriguez F (2011) Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation. Sol Energy Mater Sol Cells 95(8):2018–2022CrossRefGoogle Scholar
  43. 43.
    Huang Q, Yu H, Zhang X, Cao W, Yu J (2016) Upconversion performance enhancement of NaYF4:Yb/Tm by codoping Hf4+ as energy migrator. Acta Chim Sinica 74(2):191–198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instrumentation Analysis and Research CenterFuzhou UniversityFuzhouChina
  2. 2.National Engineering Research Center for Chemical Fertilizer Catalyst, School of Chemical EngineeringFuzhou UniversityFuzhouChina

Personalised recommendations