Advertisement

Journal of Materials Science

, Volume 52, Issue 8, pp 4345–4355 | Cite as

Nanostructure and morphology of poly(vinylidene fluoride)/polymethyl (methacrylate)/clay nanocomposites: correlation to micromechanical properties

  • F. Zouai
  • F. Z. Benabid
  • S. Bouhelal
  • M. E. Cagiao
  • D. Benachour
  • F. J. Baltá Calleja
Original Paper
  • 225 Downloads

Abstract

Nanocomposites based on poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) with untreated clay were prepared in one step by reactive melt extrusion. Chemical reactions took place between the polymer matrices, the inorganic clay particles, and three reactive agents, leading to the PVDF/PMMA/clay nanocomposites. The microstructure characterizations were carried out by differential scanning calorimetry and wide-angle X-ray scattering (WAXS). The mechanical behavior was investigated by tensile experiments, impact tests, and microhardness measurements. The morphological characterization was carried out by optical and atomic force microscopy (AFM). The decrease of the melting and crystallization temperatures of the PVDF with the increasing PMMA content is attributed to the interactions between the oxygen of the PMMA carbonyl group and the PVDF’s hydrogen atom. WAXS analysis shows that there is neither an intercalation step nor total exfoliation in any composition. As the PMMA content increases, WAXS diagrams show either the PVDF α-crystallographic form, both, α- and β-forms, or only the β-form. For PMMA contents higher than 40 wt%, the materials became amorphous. The microhardness of the samples decrease for a PMMA content up to 20 wt%. The study by optical microscopy and AFM illustrates the significant effect in the presence of clay on the film’s surface morphology.

Keywords

Differential Scanning Calorimeter PMMA PVDF Vinylidene Fluoride Dicumyl Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

FJBC gratefully acknowledges the MINECO, Spain (Grant MAT 2013–47898-C2-1-R) for the generous support of this work.

References

  1. 1.
    Pramoda KP, Ashiq M, Phang IY, Liu T (2005) Crystal transformation and thermomechanical properties of poly(vinylidene fluoride)/clay nanocomposites. Polym Int 54:226–232CrossRefGoogle Scholar
  2. 2.
    Liang Y, Omachinski S, Logsdon J, Cho JW, Lan T (2001) Nano-effect in in situ nylon-6 nanocomposites. Nanocor technical paper. Nanocor Inc., Arlington HeightsGoogle Scholar
  3. 3.
    Yano K, Usuki A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide—clay hybrid. J Polym Sci Polym Chem 31:2493–2498CrossRefGoogle Scholar
  4. 4.
    Burnside SD, Giannelis EP (1995) Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem Mater 7:1597–1600CrossRefGoogle Scholar
  5. 5.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 7:154–156CrossRefGoogle Scholar
  6. 6.
    Messersmith PB, Giannelis EP (1994) Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater 6:1719–1725CrossRefGoogle Scholar
  7. 7.
    Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRefGoogle Scholar
  8. 8.
    Saito H, Fujita Y, Inoue T (1987) Upper critical solution temperature behavior in poly(vinylidene fluoride)/poly(methyl methacrylate) blends. Polym J 19:405–1614CrossRefGoogle Scholar
  9. 9.
    Moon TJ, Yeo HG, Hyun J (1988) Dielectric properties of poly(vinylidene fluoride)-poly (methyl methacrylate) blends. Polym Korea 12:347–354Google Scholar
  10. 10.
    Sasaki H, Bala PK, Yoshida H, Ito E (1995) Miscibility of PVDF/PMMA blends examined by crystallization dynamics. Polymer 36:4805–4810CrossRefGoogle Scholar
  11. 11.
    Kalvianakis P, Jungnickel BJ (1998) Crystallization induced composition inhomogeneities in PVDF/PMMA blends. J Polym Sci Polym Phys 36:2923–2930CrossRefGoogle Scholar
  12. 12.
    Jarray J, Larbi FBC, Vanhulle F, Dubault A, Halary JL (2003) Thermal and mechanical behavior of amorphous and semi-crystalline poly(vinylidene fluoride)/poly(methyl methacrylate) blends. Macromol Symp 198:103–116CrossRefGoogle Scholar
  13. 13.
    Pillin I, Pimbert S, Levesque G (2002) Influence of additives on the crystallization kinetics of semicrystalline polymers. II: selective polymer-additive interaction in poly(vinylidene difluoride)—poly(methyl methacrylate) blends. Polym Eng Sci 42:2193–2201CrossRefGoogle Scholar
  14. 14.
    Benedetti E, Catanorchi S, D’Alessio A, Vergamini P, Ciardelli F, Pracella M (1998) FTIR microspectroscopy and DSC analysis of blends of poly(vinylidene fluoride) with isotactic and syndiotactic poly(methyl methacrylate). Polym Int 45:373–382CrossRefGoogle Scholar
  15. 15.
    Lorec G, Baley C, Sire O, Grohens Y (2005) Characterization of Interdiffusion between PVDF and stereoregular PMMA by using ATR-FTIR spectroscopy. Macromol Symp 222:265–271CrossRefGoogle Scholar
  16. 16.
    Ma W, Zhang J, Wang X, Wang S (2007) Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci 253:8377–8388CrossRefGoogle Scholar
  17. 17.
    Elashmawi IS, Hakeem NA (2008) Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci 48:895–901CrossRefGoogle Scholar
  18. 18.
    Yousefi AA (2011) Influence of polymer blending on crystalline structure of polyvinylidene fluoride. Iran Polym J 20:109–121Google Scholar
  19. 19.
    Pinnavaia TJ, Beall GW (2000) Polymer–clay nanocomposites. Wiley, New YorkGoogle Scholar
  20. 20.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer–silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRefGoogle Scholar
  21. 21.
    Le Baron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRefGoogle Scholar
  22. 22.
    Bouhelal S (2009) U.S. patent no. 7,550,526Google Scholar
  23. 23.
    Bouhelal S (2006) U.S. patent no. 6,987,149Google Scholar
  24. 24.
    Bouhelal S, Cagiao ME, Khellaf S, Tabet H, Djellouli B, Benachour D, Baltá-Calleja FJ (2010) Nanostructure and micromechanical properties of reversibly crosslinked isotactic polypropylene/clay composites. J Appl Polym Sci 115:2654–2662CrossRefGoogle Scholar
  25. 25.
    Benabid FZ, Rong L, Benachour D, Cagiao ME, Ponçot M, Zouai F, Bouhelal S, Baltá-Calleja FJ (2015) Nanostructural characterization of poly(vinylidene fluoride)-clay nanocomposites prepared by a one-step reactive extrusion process. J Polym Eng 35:181–190CrossRefGoogle Scholar
  26. 26.
    Zouai F, Bouhelal S, Cagiao ME, Benabid FZ, Benachour D, Baltá-Calleja FJ (2014) Study of nanoclay blends based on poly(ethylene terephthalate)/poly(ethylene naphthalene 2,6-dicarboxylate) prepared by reactive extrusion. J Polym Eng 34:431–439CrossRefGoogle Scholar
  27. 27.
    Bouhelal S, Cagiao ME, Bartolotta A, Di Marco G, Garrido L, Benachour D, Baltá-Calleja FJ (2010) On polyethylene chain generation through chemical crosslinking of isotactic polypropylene. J Appl Polym Sci 116:394–403Google Scholar
  28. 28.
    Risite H (2015) Nanocomposites polymères/montmorillonites: Rôle des interactions générées par la modification des argiles/polymères sur la morphologie et les propriétés structurales, thermiques, rhéologiques et mécaniques. Doctoral thesis, Mohammed V University, RabatGoogle Scholar
  29. 29.
    Brun N (2010) Chimie intégrative pour la conception des matériaux poreux fonctionnels avancés et applications. Doctoral thesis, University of Bordeaux 1, BordeauxGoogle Scholar
  30. 30.
    Salavagione HJ, Cazorla-Amorόs D, Tidjane S, Belbachir M, Benyoucef A, Morallόn E (2008) Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. Eur Polym J 44:1275–1284CrossRefGoogle Scholar
  31. 31.
    Baltá-Calleja FJ, Fakirov S (2000) Microhardness of polymers., Solid state seriesCambridge University Press, Cambridge, p 3CrossRefGoogle Scholar
  32. 32.
    Ray S, Easteal AJ, Cooney RP, Edmonds NR (2009) Structure and properties of melt-processed PVDF/PMMA/polyaniline blends. Mater Chem Phys 113:829–838CrossRefGoogle Scholar
  33. 33.
    Wunderlich B (1980) Macromolecular physics., Crystal meltingAcademic Press, New York, p 48Google Scholar
  34. 34.
    Nakagawa K, Ishida Y (1973) Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci Polym Phys Ed 11:2153–2171CrossRefGoogle Scholar
  35. 35.
    Mark JE (2007) Physical properties of polymers handbook, 2nd edn. Springer, New York, p 638CrossRefGoogle Scholar
  36. 36.
    Buckley J, Cebe P, Cherdak D, Crawford J, Seyhan IB, Jenkins M, Pan J, Reveley M, Washington N, Wolchover N (2006) Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47:2411–2422CrossRefGoogle Scholar
  37. 37.
    Okabe Y, Murakami H, Osaka N, Saito H, Inoue T (2010) Morphology development and exclusion of noncrystalline polymer during crystallization in PVDF/PMMA blends. Polymer 51:1494–1500CrossRefGoogle Scholar
  38. 38.
    Leonard C, Halary JL, Monnerie L (1988) Crystallization of poly(vinylidene fluoride)-poly(methyl methacrylate) blends: analysis of the molecular parameters controlling the nature of poly(vinylidene fluoride) crystalline phase. Macromolecules 21:2988–2994CrossRefGoogle Scholar
  39. 39.
    Freire E, Bianchi O, Monteiro EEC, Reis Nunes RC, Forte MC (2009) Processability of PVDF/PMMA blends studied by torque rheometry. Mater Sci Eng 29:657–661CrossRefGoogle Scholar
  40. 40.
    Freire E, Bianchi O, Forte MMC, Preto M, Monteiro EEC, Tavares MIB (2008) Thermal and low-field NMR study on poly(vinylidene fluoride) and their physical mixtures with poly(methyl methacrylate). Polym Eng Sci 48:1901CrossRefGoogle Scholar
  41. 41.
    Hourston DJ, Hughes ID (1977) Poly(vinylidene fluoride)-poly(methyl methacrylate) blends. Polymer 18:1175–1178CrossRefGoogle Scholar
  42. 42.
    Flores A, Baltá-Calleja FJ, Attenburrow GE, Bassett DC (2000) Microhardness studies of chain-extended PE: III. Correlation with yield stress and elastic modulus. Polymer 41:5431–5435CrossRefGoogle Scholar
  43. 43.
    Baltá-Calleja FJ, Fakirov S (2000) Microhardness of polymers., Solid state seriesCambridge University Press, Cambridge, p 91CrossRefGoogle Scholar
  44. 44.
    Baltá-Calleja FJ, Fakirov S (2000) Microhardness of polymers., Solid state seriesCambridge University Press, Cambridge, p 95CrossRefGoogle Scholar
  45. 45.
    Mina MF, Ania F, Baltá-Calleja FJ, Asano T (2004) Microhardness studies of PMMA/natural rubber blends. J Appl Polym Sci 91:205–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • F. Zouai
    • 1
  • F. Z. Benabid
    • 2
  • S. Bouhelal
    • 1
  • M. E. Cagiao
    • 3
  • D. Benachour
    • 2
  • F. J. Baltá Calleja
    • 3
  1. 1.Unité de Recherche Matériaux EmergentsUniversité Ferhat ABBAS Sétif-1SétifAlgérie
  2. 2.LMPMP, Faculté de TechnologieUniversité Ferhat ABBAS Sétif-1SétifAlgérie
  3. 3.Macromolecular PhysicsInstituto de Estructura de la Materia, CSICMadridSpain

Personalised recommendations