Journal of Materials Science

, Volume 52, Issue 7, pp 3876–3892 | Cite as

Phase transition behavior and ferroelectric and vibrational properties of (Na0.5Bi0.5)1−x Ba x Ti1−x (Fe0.5Nb0.5) x O3 ceramics

  • A. Amouri
  • H. Abdelkefi
  • N. Abdelmoula
  • H. Khemakhem
Original Paper


(Na0.5Bi0.5)(1−x)Ba x Ti(1−x)(Fe0.5Nb0.5) x O3 (NBT–BFN) lead-free ceramics with different compositions (0 ≤ x ≤ 0.1) were synthesized by the conventional solid-state reaction method and characterized by X-ray diffraction, dielectric and ferroelectric measurements, and also Raman spectroscopy. X-ray diffraction showed the presence of a single phase. The evolution of Raman spectra was recorded as a function of the chemical composition (0 ≤ x ≤ 0.1) and temperature (from 83 to 763 K). The general features of Raman spectra of the different compositions were almost similar with only subtle changes that can be attributed to the ferroelectric order rather than the structural phase transition. The complementarity between micro-Raman spectroscopy and macro-dielectric results was highlighted. Evidence of ferroelectric–antiferroelectric transition (T d) and the transition temperature (T m) was determined via Raman spectroscopic characterization. Raman scattering revealed that both substitutions on A and B sites pretreated local octahedra and resulted in localized non-polar regions that improved piezoelectric response. A detailed analysis of the temperature dependence of polarization–electric field (PE) loops was performed for (Na0.5Bi0.5)0.925Ba0.075Ti0.925(Fe0.5Nb0.5)0.075O3. This composition showed a ferroelectric–antiferroelectric phase transition around T d. This ceramic provides enhanced piezoelectric performance at room temperature compared to undoped NBT: the piezoelectric constant was d 31 = 16.98 pC/N and the electromechanical coupling factor was k p = 0.278%.


Remnant Polarization Raman Active Mode Bismuth Titanate Electromechanical Coupling Factor Mechanical Quality Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Kamel MAALOUL, translator and English professor at the Faculty of Sciences of Sfax, Tunisia, for having proofread the manuscript.


  1. 1.
    Wu J, Xiao D, Zhu J (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595CrossRefGoogle Scholar
  2. 2.
    Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. doi: 10.1007/s10853-009-3643-0 CrossRefGoogle Scholar
  3. 3.
    Lia Y, Chena W, Zhoua J, Xua Q, Suna H, Xua R (2004) Dielectric and piezoelectric properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics. Mater Sci Eng 112:5–9CrossRefGoogle Scholar
  4. 4.
    Dittmer R, Anton E-M, Jo W, Simons H, Daniels JE, Hoffman M, Pokorny J, Reaney IM, Rodel J (2012) A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J Am Ceram Soc 95(11):3519–3524CrossRefGoogle Scholar
  5. 5.
    Li M, Pietrowski MJ, Souza RAD, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0,5Bi0,5TiO3. Nat Mater 13(1):31–35 1476-1122CrossRefGoogle Scholar
  6. 6.
    Levin I, Reaney IM, Anton E-M, Jo W, R¨odel J, Pokorny J, Schmitt LA, Kleebe H-J, Hinterstein M, Jones JL (2013) Local structure, pseudosymmetry, and phase transitions in Na1/2Bi 1/2TiO3–K1/2Bi1/2 TiO3 ceramics. Phys Rev B 87(2):024113CrossRefGoogle Scholar
  7. 7.
    Gou Q, Wu J, Li A, Wu B, Xiao D, Zhu J (2012) Enhanced d33 value of Bi0.5Na0.5TiO3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J Alloy Compd 521:4–7CrossRefGoogle Scholar
  8. 8.
    Zhang B, Wu J, Wu B, Xiao D, Zhu J (2012) Effects of sintering temperature and poling conditions on the electrical properties of Bi0.50(Na0.70K0.20Li0.10)0.50TiO3 piezoelectric ceramics. J Alloy Compd 525:53–57CrossRefGoogle Scholar
  9. 9.
    Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X (2014) Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910CrossRefGoogle Scholar
  10. 10.
    Swain S, KumarKar S, Kumar P (2015) Dielectric, optical, piezoelectric and ferroelectric studies of NBT–BT ceramics near MPB. Ceram Int 41:10710–10717CrossRefGoogle Scholar
  11. 11.
    Sameera Devi Ch, Kumar GS, Prasad G (2013) Control of ferroelectric phase transition in nano particulate NBT–BT based ceramics. Mater Sci Eng B 178:283–292CrossRefGoogle Scholar
  12. 12.
    Xie H, Jin L, Shen D, Wang X, Shen G (2009) Morphotropic phase boundary, segregation effect and crystal growth in the NBT–KBT system. J Cryst Growth 311:3626–3630CrossRefGoogle Scholar
  13. 13.
    Otonicar M, Skapin SD, Spreitzer M, Suvorov D (2010) Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system. J Eur Ceram Soc 30:971–979CrossRefGoogle Scholar
  14. 14.
    Swain S, Kumar P, Agrawal DK, Sonia (2013) Dielectric and ferroelectric study of KNN modified NBT ceramics synthesized by microwave processing technique. Ceram Int 39:3205–3210CrossRefGoogle Scholar
  15. 15.
    Dorcet V, Trolliard G (2008) A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta Mat 56:1753–1761CrossRefGoogle Scholar
  16. 16.
    Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. part I: first order rhombohedral to orthorhombic phase transition. Chem Mat 20:5061–5073CrossRefGoogle Scholar
  17. 17.
    Suchanicz J, Mercurio IP, Marchet P, Kruzina TV (2001) Axial pressure influence on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramic. Phys Status Solidi b 225(2):459–466CrossRefGoogle Scholar
  18. 18.
    Kreisel J, Glazer AM, Jones G, Thomas PA, Abello L, Lucazeau G (2000) An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−xKx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys 12(14):3267Google Scholar
  19. 19.
    Suchanicz J, Jankowska-Sumara I, Kruzina TV (2011) Raman and infrared spectroscopy of Na0.5Bi 0.5TiO3-BaTiO3 ceramics. J Electroceram 27:45–50CrossRefGoogle Scholar
  20. 20.
    Luo L, Ge W, Li J, Viehland D, Farley C, Bodnar R, Zhang Q, Luo H (2011) Raman spectroscopic study of Na1/2Bi1/2TiO3-x%BaTiO3 single crystals as a function of temperature and composition. J Appl Phys 109(11):113507CrossRefGoogle Scholar
  21. 21.
    Lidjici H, Lagoun B, Berrahal M, Rguitti M, Hentatti MA, Khemakhem H (2015) XRD, Raman and electrical studies on the (1−x)(Na0.5Bi0.5)TiO3-xBaTiO3 lead free ceramics. J Alloy Compd 618:643–648CrossRefGoogle Scholar
  22. 22.
    ShanmugaSundari S, Kumar B, Dhanasekaran R (2013) Synthesis, dielectric and relaxation behavior of lead free NBT–BT ceramics. Ceram Int 39(1):555–561CrossRefGoogle Scholar
  23. 23.
    Otonicar M, Skapin SD, Spreitzer M, Suvorov D (2010) Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system. J Eur Ceram Soc 30(4):971–979CrossRefGoogle Scholar
  24. 24.
    Saıd S, Marchet P, Merle-Mejean T, Mercurio JP (2004) Raman spectroscopy study of the Na0.5Bi0.5TiO3-PbTiO3 system. Mater Lett 58:1405–1409CrossRefGoogle Scholar
  25. 25.
    Raevski IP, Prosandeev SA, Bogatin AS, Malitskaya MA, Jastrabik L (2003) High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A = Ba, Sr, Ca; B = Nb, Ta, Sb. J Appl Phys 93(71):4130–4136CrossRefGoogle Scholar
  26. 26.
    Abdelkafi Z, Abdelmoula N, Khemakhem H, Von Der Muhll R, Bih L (2007) Effects of the substitution of titanium by iron and niobium on the structure and dielectric properties in BaTi1−x(Fe0.5Nb0.5)xO3 solid solution. J Alloy Compd 427:260–266CrossRefGoogle Scholar
  27. 27.
    Amouri A, Rouquette J, Hehlen B, Sauvajol JL, Khemakhem H (2014) Physical properties of new, lead free (Na0.5Bi0.5)(1−x)BaxTi(1−x)(Fe0.5Nb0.5)xO3 ceramics. Ceram Int 40:8219–8227CrossRefGoogle Scholar
  28. 28.
    Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit–Wigner–Fano line shape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63(15):155414CrossRefGoogle Scholar
  29. 29.
    Ma C, Tan X, Dulkin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3 xBaTiO3 ceramics. J Appl Phys 108(104105–2):104105–104108CrossRefGoogle Scholar
  30. 30.
    Kreisel J, Glazer AM, Jones G, Thomas PA, Abello L, Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1−x Kx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys 12:3267–3280Google Scholar
  31. 31.
    Maurya D, Kumar A, Petkov V, Mahaney JE, Katiyar RS, Priya S (2014) Local structure and piezoelectric instability in lead free(1−x)BaTiO3-xA(Cu1/3Nb2/3)O3 (A = Sr, Ca, Ba) solid solutions. RSC Adv 4:1283–1292CrossRefGoogle Scholar
  32. 32.
    Daniels JE, Jonesand JL, Finlayson TR (2006) Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics. J Phys D Appl Phys 39:5294–5299CrossRefGoogle Scholar
  33. 33.
    Eerd BW, Damjanovic D, Klein N, Setter N, Trodahl J (2010) Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys Rev B 82:104112CrossRefGoogle Scholar
  34. 34.
    Zhang S, Lim JB, Lee HJ, Shrout TR (2009) Characterization of hard piezoelectric lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 56:1523–1527CrossRefGoogle Scholar
  35. 35.
    Cao WP, Li WL, Xu D, Hou YF, Wang W, Fei WD (2014) Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram Int 40:9273–9278CrossRefGoogle Scholar
  36. 36.
    Cao WP, Li WL, Dai XF, Zhang TD, Sheng J, Hou YF, Fei WD (2016) Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 36(3):593–600CrossRefGoogle Scholar
  37. 37.
    Zhou J, Peng WW, Zhang D, Yang XY, Chen W (2008) Polarization properties of Na1/2Bi1/2TiO3 system: first-principles calculation and experiment. Comput Mater Sci 44(1):67–71CrossRefGoogle Scholar
  38. 38.
    Zhang ST, Yang B, Cao W (2012) The temperature-dependent electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta Mater 60:469–475CrossRefGoogle Scholar
  39. 39.
    Daniels JE, Jo W, Rodel J, Honkimaki V, Jones JL (2010) Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: a combinatorial investigation. Acta Mater 58:2103–2111CrossRefGoogle Scholar
  40. 40.
    Somwan S, Ngamjarurojana A, Limpichaipanit A (2016) Dielectric, ferroelectric and induced strain behavior of PLZT9/65/35 ceramics modified by Bi2O3 and CuO co-doping. Ceram Int 42:10690–10696CrossRefGoogle Scholar
  41. 41.
    Jones JL, Hoffman M, Bowman KJ (2005) Saturated domain switching textures and strains in ferroelastic ceramics. J Appl Phys 98(2):024115CrossRefGoogle Scholar
  42. 42.
    Jones JL, Hoffman M, Daniels JE, Studer AJ (2006) Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl Phys Lett 89(9):092901CrossRefGoogle Scholar
  43. 43.
    Daniels JE, Jo W, Rödel J, Jones JL (2009) Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic. Appl Phys Lett 95:032904CrossRefGoogle Scholar
  44. 44.
    Standards on piezoelectricity, ANSI/IEEE std (1987), p. 176Google Scholar
  45. 45.
    Roleder K, Franke I, Glazer AM, Thomas PA, Miga S, Suchanicz J (2002) The piezoelectric effect in Na0.5Bi0.5TiO 3 ceramics. J Phys 14:5399–5406Google Scholar
  46. 46.
    Petzelt J, Kamba S, Fabry J, Noujni D, Porokhonsky V, Pashkin A, Franke I, Roleder K, Suchanicz J, Klein R, Kugel GE (2004) Infrared, Raman and high-frequency dielectric and spectroscopy and phase transitions in Na1/2Bi1/2TiO3. J Phys 16:2719–2731Google Scholar
  47. 47.
    Aksel E, Forrester JS, Kowalski B, Deluca M, Damjanovic D, Jones JL (2012) Structure and properties of Fe-modified Na0.5Bi0.5TiO3 at ambient and elevated temperature. Phys Rev B 85(2):024121CrossRefGoogle Scholar
  48. 48.
    Devi CS, Kumar GS, Prasad G (2013) Control of ferroelectric phase transition in nano particulate NBT–BT based ceramics. Mater Sci Eng B 178(5):283–292CrossRefGoogle Scholar
  49. 49.
    Niranjan MK, Karthik T, Asthana S, Pan J, Waghmare UV (2013) Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J Appl Phys 113(19):194106CrossRefGoogle Scholar
  50. 50.
    Barick BK, Mishra KK, Arora AK, Choudhary RNP, Pradhan DK (2011) Impedance and raman spectroscopic studies of (Na0.5 Bi 0.5)TiO3. J Phys D Appl Phys 44:355402CrossRefGoogle Scholar
  51. 51.
    Macfarlane RM, Rosen HJ, Engler EM, Jacowitz RD, Lee VY (1988) Raman study of the effect of oxygen stoichiometry on the phonon spectrum of the high-T, superconductor YSa2Cu30. Phys Rev B 38:1CrossRefGoogle Scholar
  52. 52.
    Cao Y, Zhu K, Liu J, Qiu J (2014) Fabrication of BaTiO3 nanoparticles and its formation mechanism using the high temperature mixing method under hydrothermal conditions. Adv Powder Technol 25:853–858CrossRefGoogle Scholar
  53. 53.
    Asiaie R, Zhu W, Akbar SA, Dutta PK (1996) Characterization of submicron particles of tetragonal BaTiO3. Chem Mater 8:226–234CrossRefGoogle Scholar
  54. 54.
    Toulouse J, Jiang F, Svitelskiy O, Chen W, Ye Z-G (2005) Temperature evolution of the relaxor dynamics in PbZn1/3Nb2/3O3: a critical raman analysis. Phys Rev B72:184106CrossRefGoogle Scholar
  55. 55.
    Svitelskiy O, Toulouse J (2003) Translational and rotational mode coupling in the disordered ferroelectric KTa1-xNbxO3 (KTN) studied by raman spectroscopy. J Phys Chem Solids 64:665–676CrossRefGoogle Scholar
  56. 56.
    La-Orauttapong D, Svitelskiy O, Toulouse J (2003) Condensation and slow dynamics of polar nanoregions in lead relaxors, Fundamental Physics of Ferroelectrics 2003. AIP vol. 677. Williamsburg,p. 98Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Amouri
    • 1
  • H. Abdelkefi
    • 1
  • N. Abdelmoula
    • 1
  • H. Khemakhem
    • 1
  1. 1.Laboratoire des Matériaux Multifonctionnels et Applications (LMMA), Faculté des Sciences de Sfax (FSS)Université de SfaxSfaxTunisia

Personalised recommendations