Advertisement

Journal of Materials Science

, Volume 52, Issue 6, pp 3447–3456 | Cite as

Diamond’s third-order elastic constants: ab initio calculations and experimental investigation

  • Arsenii V. Telichko
  • Sergey V. Erohin
  • Gennady M. Kvashnin
  • Pavel B. Sorokin
  • Boris P. Sorokin
  • Vladimir D. Blank
Original Paper

Abstract

In order to obtain more reliable values of diamond’s third-order elastic constants, experiments on bulk acoustic wave propagation under uniaxial stress application (up to 450 MPa) in pure IIa-type synthetic single-crystal diamond were carried out, and values of third-order elastic constants were calculated. We have also provided theoretical analysis using ab initio density functional theory approach which has shown close correspondence with the experimentally measured data. From ab initio calculations, the values of third-order elastic constants are (GPa): C 111 = −7611, C 112 = −1637, C 144 = −199, C 155 = −2799, C 123 = 604, C 456 = −1148, while experimental values are C 111 = −7750 ± 750, C 112 = −2220 ± 500, C 144 = −1780 ± 440, C 155 = −2800 ± 220, C 123 = 2100 ± 200, C 456 = −30 ± 150. The estimated values on diamond’s fourth-order elastic constants were obtained. The calculated stress–strain curves for different crystal orientations were investigated, including shear stress for [111] direction. From calculations for [100], [110], and [111] directions, the values of critical stress in case of the pure shear were estimated as 222, 113, and 84 GPa, respectively.

Keywords

Elastic Constant Uniaxial Pressure Strain Dependence Bulk Acoustic Wave Crystalline Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was carried out with the use of the Shared Facilities Center “Study of Nanostructured, Carbon, and Superhard Materials” of the Technological Institute for Superhard and Novel Carbon Materials. Calculations were made on the “Cherry” supercomputer cluster provided by the Materials Modeling and Development Laboratory at NUST «MISIS» (supported via the Grant from the Ministry of Education and Science of the Russian Federation No. 14.Y26.31.0005). P.B.S. gratefully acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No. K2-2015-033) and Grant of President of Russian Federation for government support of young PhD scientists (MK-6218.2015.2). The work (B.P.S.) was in part supported by a grant of Russian Science Foundation (Project #16-12-10293).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Blank V, Popov M, Lvova N, Gogolinsky K, Reshetov V (1997) Nano-sclerometry measurements of superhard materials and diamond hardness using scanning force microscope with the ultrahard fullerite C60 tip. J Mater Res 12:3109–3114. doi: 10.1557/JMR.1997.0406 CrossRefGoogle Scholar
  2. 2.
    Sorokin BP, Telichko AV, Kvashnin GM, Bormashov VS, Blank VD (2015) Study of microwave acoustic attenuation in a multifrequency bulk acoustic wave resonator based on a synthetic diamond single crystal. Acoust Phys 61:669–680CrossRefGoogle Scholar
  3. 3.
    Baron T, Lebrasseur E, Romand JP, Alzuaga S, Queste S, Martin G et al (2010) Temperature compensated radio-frequency harmonic bulk acoustic resonators pressure sensors. In: Proceedings of the IEEE international ultrasonics symposium San Diego, IEEE Ultrasonics, Ferroelectrics and Frequency Control Society,California, USA, pp 2040–2043Google Scholar
  4. 4.
    Berkenpas E, Kenny T, Millard P, da Cunha MP (2005) A langasite SH SAW O157:H7 E. coli sensor In: Proceedings. of the IEEE international ultrasonics symposium. Rotterdam, IEEE Ultrasonics, Ferroelectrics and Frequency Control Society, The Netherlands, pp 54–57Google Scholar
  5. 5.
    Ballandras S, Baron T, Lebrasseur E, Martin G, Alzuaga S, Friedt JM et al (2011) High overtone bulk acoustic resonators built on single crystal stacks for sensors applications In: Proceedings of the IEEE sensors Limerick, IEEE Sensors Council, Ireland, pp 516–519Google Scholar
  6. 6.
    Brugger K (1965) Pure modes for elastic waves in crystals. J Appl Phys 36:768–772CrossRefGoogle Scholar
  7. 7.
    Holt AC, Ford J (1967) Theory of ultrasonic pulse measurements of third-order elastic constants for cubic crystals. J Appl Phys 38:42–50CrossRefGoogle Scholar
  8. 8.
    Keating PN (1966) Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys Rev 145:637–645CrossRefGoogle Scholar
  9. 9.
    Keating PN (1966) Theory of the third-order elastic constants of diamond-like crystals. Phys Rev 149:674–678CrossRefGoogle Scholar
  10. 10.
    Lopuszynski M, Majewski JA (2007) Ab initio calculations of third-order elastic constants and related properties for selected semiconductors. Phys Rev B 76:045202–045211CrossRefGoogle Scholar
  11. 11.
    Wang H, Li M (2009) Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Phys Rev B 79:224102CrossRefGoogle Scholar
  12. 12.
    Sorokin BP, Kvashnin GM, Kuznetsov MS, Telichko AV, Burkov SI (2012) Influence of the temperature and uniaxial pressure on the elastic properties of synthetic diamond single crystal. In: Proceedings of the IEEE international ultrasonics symposium Dresden, Germany, pp 763–766Google Scholar
  13. 13.
    Popov MY (2010) Stress-induced phase transitions in diamond. High Press Res 30:670–678CrossRefGoogle Scholar
  14. 14.
    Telling RH, Pickard CJ, Payne MC, Field JE (2000) Theoretical strength and cleavage of diamond. Phys Rev Lett 84:5160–5163CrossRefGoogle Scholar
  15. 15.
    Chacham H, Kleinman L (2000) Instabilities in diamond under high shear stress. Phys Rev Lett 85:4904–4907CrossRefGoogle Scholar
  16. 16.
    McSkimin HJ (1950) Ultrasonic measurement techniques applicable to small solid specimens. J Acoust Soc Am 22:413–418CrossRefGoogle Scholar
  17. 17.
    McSkimin HJ, Andreatch P, Glunn P (1972) Elastic moduli of diamond as a function of pressure and temperature. J Appl Phys 43:2944–2948CrossRefGoogle Scholar
  18. 18.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  19. 19.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRefGoogle Scholar
  22. 22.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal—amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  23. 23.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  24. 24.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  25. 25.
    Modak P, Verma AK, Sharma SM (2015) Determination of the third-order elastic constants of diamond by shock wave simulations. Europhys Lett 110:56003–56009CrossRefGoogle Scholar
  26. 26.
    Kulnitskiy B, Perezhogin I, Dubinsky G, Blank V (2013) Polytypes and twins in the diamond-lonsdaleite system formed by high-pressure and high-temperature treatment of graphite. Acta Crystallogr 69:474–479CrossRefGoogle Scholar
  27. 27.
    Zouboulis ES, Grimsditch M, Ramdas AK, Rodriguez S (1998) Temperature dependence of the elastic moduli of diamond: a Brillouin-scattering study. Phys Rev B 57:2889–2896CrossRefGoogle Scholar
  28. 28.
    Migliori A, Ledbetter H, Leisure RG, Pantea C, Betts JB (2008) Diamond’s elastic stiffnesses from 322 K to 10 K. J Appl Phys 104:053512–053514CrossRefGoogle Scholar
  29. 29.
    Grimsditch MH, Anastassakis E, Cardona M (1978) Effect of uniaxial stress on the zone-center optical phonon of diamond. Phys Rev B 18:901–904CrossRefGoogle Scholar
  30. 30.
    Nielsen OH (1986) Optical phonons and elasticity of diamond at megabar stresses. Phys Rev B 34:5808–5819CrossRefGoogle Scholar
  31. 31.
    Anastassakis E, Cantarero A, Cardona M (1990) Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys Rev B 41:7529–7535CrossRefGoogle Scholar
  32. 32.
    Cousins CSG (2003) Elasticity of carbon allotropes. I. Optimization, and subsequent modification, of an anharmonic Keating model for cubic diamond. Phys Rev B 67:024107CrossRefGoogle Scholar
  33. 33.
    Lang JM Jr, Gupta YM (2011) Experimental determination of third-order elastic constants of diamond. Phys Rev Lett 106:125502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arsenii V. Telichko
    • 1
    • 2
  • Sergey V. Erohin
    • 1
    • 2
  • Gennady M. Kvashnin
    • 2
  • Pavel B. Sorokin
    • 1
    • 2
    • 3
  • Boris P. Sorokin
    • 1
    • 2
  • Vladimir D. Blank
    • 1
    • 2
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
  2. 2.Technological Institute for Superhard and Novel Carbon Materials (TISNCM)Troitsk, MoscowRussian Federation
  3. 3.National University of Science and Technology (MISIS)MoscowRussian Federation

Personalised recommendations