Journal of Materials Science

, Volume 52, Issue 7, pp 3670–3677 | Cite as

Morphology, composition and electrochemistry of a nano-porous silicon versus bulk silicon anode for lithium-ion batteries

  • Tianchan Jiang
  • Ruibo Zhang
  • Qiyue Yin
  • Wenchao Zhou
  • Zhixin Dong
  • Natasha A. Chernova
  • Qi Wang
  • Fredrick Omenya
  • M. Stanley Whittingham
Batteries and Supercapacitors


The volumetric energy density of today’s lithium-ion batteries is limited mostly by the graphitic carbon anode. Silicon is a promising replacement but its excessive volume expansion on lithiation limits its long-term cyclability performance. A nano-sized aluminium containing silicon, leached in acid, with a porous structure is shown to maintain its capacity higher than pure bulk silicon or nano-sized silicon by over 700 mAh/g. The capacity of leached silicon is maintained at 1400 mAh/g for more than 60 cycles. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nuclear magnetic resonance spectroscopy have been used to correlate the electrochemical performance with the materials' morphology and composition.


Scanning Transmission Electron Microscopy Graphitic Carbon Solid Electrolyte Interphase Silicon Material High Angle Annular Dark Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is based upon work supported by DOE-EERE, as part of BATT, DE-AC02-05CH11231 under Award Number 6807148. Use of the National Synchrotron Light Source at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. We thank Dr. Shailesh Upreti for providing the milled silicon sample. We also thank Qiyue Yin from Prof. Guangwen Zhou’s group for her help with TEM analysis, which was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, and supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. And we thank Dr. Juergen T. Schulte and Jordi Cabana for their help with the NMR analysis.


  1. 1.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  2. 2.
    Nesper R, Vonschnering HG (1987) Li2Si5, a zintl phase as well as a Hume-Rothery phase. J Solid State Chem 70:48–57CrossRefGoogle Scholar
  3. 3.
    Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries. J Power Sour 81:237–242CrossRefGoogle Scholar
  4. 4.
    Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114:11414–11443CrossRefGoogle Scholar
  5. 5.
    Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sour 68:87–90CrossRefGoogle Scholar
  6. 6.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRefGoogle Scholar
  7. 7.
    Yazami R, Genies S (1998) Chemical stability of lithiated-HOPG with some organic electrolytes. Denki Kagaku 66:1293–1298Google Scholar
  8. 8.
    Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50CrossRefGoogle Scholar
  9. 9.
    Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D (2007) Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Commun 9:796–800CrossRefGoogle Scholar
  10. 10.
    Xie C, Lin ZL, Hanson L, Cui Y, Cui BX (2012) Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol 7:185–190CrossRefGoogle Scholar
  11. 11.
    Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid State Lett 2:547–549CrossRefGoogle Scholar
  12. 12.
    Yu Y, Gu L, Zhu C, Tsukimoto S, van Aken PA, Maier J (2010) Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv Mater 22(20):2247–2250CrossRefGoogle Scholar
  13. 13.
    Jia H, Gao P, Yang J, Wang J, Nuli Y, Yang Z (2011) Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater 1:1036–1039CrossRefGoogle Scholar
  14. 14.
    Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11:2949–2954CrossRefGoogle Scholar
  15. 15.
    Bogart TD, Chockla AM, Korgel BA (2013) High capacity lithium ion battery anodes of silicon and germanium. Curr Opin Chem Eng 2:286–293CrossRefGoogle Scholar
  16. 16.
    Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRefGoogle Scholar
  17. 17.
    Kohandehghan A, Kalisvaart P, Kupsta M, Zahiri B, Amirkhiz BS, Li ZP, Memarzadeh EL, Bendersky LA, Mitlin D (2013) Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries. J Mater Chem A 1:1600–1612CrossRefGoogle Scholar
  18. 18.
    Kohandehghan A, Cui K, Kupsta M, Memarzadeh E, Kalisvaart P, Mitlin D (2014) Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes. J Mater Chem A 2:11261–11279CrossRefGoogle Scholar
  19. 19.
    Sayama HYK, Kato Y, Matsuta S, Tarui H, Fujitani S (2002) In: Abstract 52, the 11th international meeting on lithium batteries, Monterey, CAGoogle Scholar
  20. 20.
    Takamura SOT, Suzuki J, Sekine K (2002) In: Abstract 257, the 11th international meeting on lithium batteries, Monterey, CAGoogle Scholar
  21. 21.
    Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847CrossRefGoogle Scholar
  22. 22.
    Lotfabad EM, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2:2504–2516CrossRefGoogle Scholar
  23. 23.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  24. 24.
    Wang CS, Wu GT, Zhang XB, Qi ZF, Li WZ (1998) Lithium insertion in carbon-silicon composite materials produced by mechanical milling. J Electrochem Soc 145:2751–2758CrossRefGoogle Scholar
  25. 25.
    Kim I, Kumta PN, Blomgren GE (2000) Si/TiN nanocomposites-novel anode materials for Li-ion batteries. Electrochem Solid State Lett 3:493–496CrossRefGoogle Scholar
  26. 26.
    Graetz J, Ahn CC, Yazami R, Fultz B (2003) Highly reversible lithium storage in nanostructured silicon. Electrochem Solid State Lett 6:A194–A197CrossRefGoogle Scholar
  27. 27.
    Hwang G, Park H, Bok T, Choi S, Lee S, Hwang I, Choi NS, Seo K, Park S (2015) A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al–Si alloy and subsequent thermal oxidation. Chem Commun 51:4429–4432CrossRefGoogle Scholar
  28. 28.
    Zhou W, Jiang T, Zhou H, Wang Y, Fang J, Whittingham MS (2013) The nanostructure of the Si–Al eutectic and its use in lithium batteries. MRS Commun 3:119–121CrossRefGoogle Scholar
  29. 29.
    Murray AMJ (1984) The Al–Si (aluminum–silicon) system. J Phase Equilib 5:74–84Google Scholar
  30. 30.
    Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory report. LAUR 86-748, Los Alamos National Laboratory, Los AlamoGoogle Scholar
  31. 31.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  32. 32.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sour 163:1003–1039CrossRefGoogle Scholar
  33. 33.
    Lee YM, Lee JY, Shim H-T, Lee JK, Park J-K (2007) SEI layer formation on amorphous Si thin electrode during precycling. J Electrochem Soc 154:A515–A519CrossRefGoogle Scholar
  34. 34.
    Hull R (1999) Properties of crystalline silicon. IET, LondonGoogle Scholar
  35. 35.
    Jeong G, Kim Y-U, Krachkovskiy SA, Lee CK (2010) A nanostructured SiAl0.2O anode material for lithium batteries. Chem Mater 22:5570–5579CrossRefGoogle Scholar
  36. 36.
    Hohl A, Wieder T, van Aken PA, Weirich TE, Denninger G, Vidal M, Oswald S, Deneke C, Mayer J, Fuess H (2003) An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J Non-Cryst Solids 320:255–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tianchan Jiang
    • 1
  • Ruibo Zhang
    • 1
  • Qiyue Yin
    • 1
  • Wenchao Zhou
    • 1
  • Zhixin Dong
    • 1
  • Natasha A. Chernova
    • 1
  • Qi Wang
    • 1
  • Fredrick Omenya
    • 1
  • M. Stanley Whittingham
    • 1
  1. 1.Institute for Materials Research and Department of Chemistry State University of New York at BinghamtonBinghamtonUSA

Personalised recommendations