Advertisement

Journal of Materials Science

, Volume 52, Issue 6, pp 3110–3123 | Cite as

Controlled hydrothermal synthesis and luminescent properties of Y2WO6:Eu3+ nanophosphors for light-emitting diodes

  • Jingang Li
  • Zheyi Wu
  • Xiaoyu Sun
  • Xianwen Zhang
  • Rucheng Dai
  • Jian Zuo
  • Zhi Zhao
Original Paper

Abstract

In this paper, Eu3+-doped yttrium tungstate (Y2WO6) nanophosphors with different morphologies have been synthesized by a hydrothermal method with the assistance of cetyltrimethyl ammonium bromide. X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence spectroscopy (PL) were used to characterize the products. The pH value of the starting solution plays a crucial role in the structures and morphologies of the samples. When the precursors synthesized under alkaline condition are annealed at 1100 °C in the air, the pure monoclinic Y2WO6 phase can be obtained. The results of HRTEM and SAED are consistent with those of the XRD patterns, confirming the high crystallinity of the products. A detailed study of the optical properties, including the UV–Vis diffuse reflection spectra, the excitation and emission spectra, CIE coordinate, and color purity of Y2WO6:Eu3+ nanophosphors with different doping concentrations, are presented here. The critical distance R c and energy transfer mechanism for the concentration quenching of Eu3+ ions are discussed in detail. In addition, the decay time and the thermal stability of the samples have been also investigated elaborately. The PL properties of the as-synthesized materials indicate promising applications in UV-pumped red light-emitting diodes.

Keywords

Doping Concentration Select Area Electron Diffraction Charge Transfer Band Color Purity CaMoO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11404320, 11304300), and the Anhui Provincial Natural Science Foundation of China (1308085QA06).

Supplementary material

10853_2016_598_MOESM1_ESM.doc (13.7 mb)
Supplementary material 1 (DOC 13990 kb)

References

  1. 1.
    Guo N, You HP, Song YH, Yang M, Liu K, Zheng YH, Huang YJ, Zhang HJ (2010) White-light emission from a single-emitting-component Ca9Gd(PO4)7:Eu2+, Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes. J Mater Chem 20:9061–9067CrossRefGoogle Scholar
  2. 2.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374CrossRefGoogle Scholar
  3. 3.
    Phillips JM, Coltrin ME, Crawford MH, Fischer AJ, Krames MR, Mueller-Mach R, Mueller GO, Ohno Y, Rohwer LES, Simmons JA, Tsao JY (2007) Research challenges to ultra-efficient inorganic solid-state lighting. Laser Photon Rev 1:307–333CrossRefGoogle Scholar
  4. 4.
    Bachmann V, Ronda C, Meijerink A (2009) Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem Mater 21:2077–2084CrossRefGoogle Scholar
  5. 5.
    Shang MM, Li CX, Lin J (2014) How to produce white light in a single-phase host. Chem Soc Rev 43:1372–1386CrossRefGoogle Scholar
  6. 6.
    Liu Y, Liu GX, Wang JX, Dong XT, Yu WS (2014) Single-component and warm-white-emitting phosphor NaGd(WO4)2:Tm3+, Dy3+, Eu3+: synthesis, luminescence, energy transfer, and tunable color. Inorg Chem 53:11457–11466CrossRefGoogle Scholar
  7. 7.
    Chen L, Chen KJ, Lin CC, Chu CI, Hu SF, Lee MH, Liu RS (2010) Combinatorial approach to the development of a single mass YVO4:Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes. J Comb Chem 12:587–594CrossRefGoogle Scholar
  8. 8.
    Adivarahan V, Wu S, Chitnis A, Pachipulusu R, Mandavilli V, Shatalov M, Zhang JP, Khan MA, Tamulaitis G, Sereika A, Yilmaz I, Shur MS, Gaska R (2002) AlGaN single-quantum-well light-emitting diodes with emission at 285 nm. Appl Phys Lett 81:3666–3668CrossRefGoogle Scholar
  9. 9.
    Pernot C, Fukahori S, Inazu T, Fujita T, Kim M, Nagasawa Y, Hirano A, Ippommatsu M, Iwaya M, Kamiyama S, Akasaki I, Amano H (2011) Development of high efficiency 255–355 nm AlGaN-based light-emitting diodes. Phys Status Solidi A 208:1594–1596CrossRefGoogle Scholar
  10. 10.
    Kuznetsov AS, Nikitin A, Tikhomirov VK, Shestakov MV, Moshchalkov VV (2013) Ultraviolet-driven white light generation from oxyfluoride glass co-doped with Tm3+-Tb3+-Eu3+. Appl Phys Lett 102:161916CrossRefGoogle Scholar
  11. 11.
    Zhao Z, Sui ZL, Wei XT, Zuo J, Zhang XW, Dai RC, Zhang ZM, Ding ZJ (2015) Structure transformation and remarkable site-distribution modulation of Eu3+ ions in CaMoO4:Eu3+ nanocrystals under high pressure. CrystEngComm 17:7905–7914CrossRefGoogle Scholar
  12. 12.
    Song HW, Yu LX, Lu SZ, Wang T, Liu ZX, Yang LM (2004) Remarkable differences in photoluminescent properties between LaPO4: Eu one-dimensional nanowires and zero-dimensional nanoparticles. Appl Phys Lett 85:470–472CrossRefGoogle Scholar
  13. 13.
    Taniguchi T, Watanabe T, Katsumata K, Okada K, Matsushita N (2010) Synthesis of amphipathic YVO4:Eu3+ nanophosphors by oleate-modified nucleation/hydrothermal-growth process. J Phys Chem C 114:3763–3769CrossRefGoogle Scholar
  14. 14.
    Wang J, Zhang ZJ, Zhao JT, Chen HH, Yang XX, Tao Y, Huang Y (2010) Luminescent metastable Y2WO6:Ln3+ (Ln = Eu, Er, Sm, and Dy) microspheres with controllable morphology via self-assembly. J Mater Chem 20:10894–10900CrossRefGoogle Scholar
  15. 15.
    Mao ZY, Zhu YC, Gan L, Zeng Y, Xu FF, Wang Y, Tian H, Li J, Wang DJ (2013) Tricolor emission Ca3Si2O7: Ln (Ln = Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode. J Lumin 134:148–153CrossRefGoogle Scholar
  16. 16.
    Zhang XW, Zhao Z, Zhang X, Marathe A, Cordes DB, Weeks B, Chaudhuri J (2013) Tunable photoluminescence and energy transfer of YBO3:Tb3+, Eu3+ for white light-emitting diodes. J Mater Chem C 1:7202–7207CrossRefGoogle Scholar
  17. 17.
    Park SH, Lee KH, Unithrattil S, Yoon HS, Jang HG, Im WB (2012) Melilite-structure CaYAl3O7:Eu3+ phosphor: structural and optical characteristics for near-UV LED-based white light. J Phys Chem C 116:26850–26856CrossRefGoogle Scholar
  18. 18.
    Huang SH, Zhang X, Wang LZ, Bai L, Xu J, Li CX, Yang PP (2012) Controllable synthesis and tunable luminescence properties of Y2(WO4)3:Ln3+ (Ln = Eu, Yb/Er, Yb/Tm and Yb/Ho) 3D hierarchical architectures. Dalton Trans 41:5634–5642CrossRefGoogle Scholar
  19. 19.
    Wang Q, Zhu G, Li YY, Wang YH (2015) Photoluminescent properties of Pr3+ activated Y2WO6 for light-emitting diodes. Opt Mater 42:385–389CrossRefGoogle Scholar
  20. 20.
    Xiong FB, Guo DS, Lin HF, Wang LJ, Shen HX, Zhu WZ (2015) High-color-purity red-emitting phosphors RE2WO6:Pr3+ (RE = Y, Gd) for blue LED. J Alloys Compd 647:1121–1127CrossRefGoogle Scholar
  21. 21.
    Qian HJ, Zhang JY, Yin LQ (2013) Crystal structure and optical properties of white light-emitting Y2WO6:Sm3+ phosphor with excellent color rendering. RSC Adv 3:9029–9034CrossRefGoogle Scholar
  22. 22.
    Mu ZF, Hu YH, Chen L, Wang XJ, Ju GF, Yang ZF, Jin YH (2014) A single-phase, color-tunable, broadband-excited white light-emitting phosphor Y2WO6:Sm3+. J Lumin 146:33–36CrossRefGoogle Scholar
  23. 23.
    Tian LH, Yang P, Wu H, Li FY (2010) Luminescence properties of Y2WO6:Eu3+ incorporated with Mo6+ or Bi3+ ions as red phosphors for light-emitting diode applications. J Lumin 130:717–721CrossRefGoogle Scholar
  24. 24.
    Llanos J, Olivares D, Manríquez V, Espinoza D, Brito I (2015) Synthesis and luminescent properties of two different Y2WO6:Eu3+ phosphor phases. J Alloys Compd 628:352–356CrossRefGoogle Scholar
  25. 25.
    Kaczmarek AM, Van Hecke K, Van Deun R (2014) Enhanced luminescence in Ln3+-doped Y2WO6 (Sm, Eu, Dy) 3D microstructures through Gd3+ codoping. Inorg Chem 53:9498–9508CrossRefGoogle Scholar
  26. 26.
    Huang MN, Ma YY, Xiao F, Zhang QY (2014) Bi3+ sensitized Y2WO6:Ln3+ (Ln = Dy, Eu, and Sm) phosphors for solar spectral conversion. Spectrochim Acta Part A 120:55–59CrossRefGoogle Scholar
  27. 27.
    Zeng YB, Li ZQ, Wang LM, Xiong YJ (2012) Controlled synthesis of Gd2(WO4)3 microstructures and their tunable photoluminescent properties after Eu3+/Tb3+ doping. CrystEngComm 14:7043–7048CrossRefGoogle Scholar
  28. 28.
    Wang J, Hojamberdiev M, Xu YH (2012) CTAB-assisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range. Solid State Sci 14:191–196CrossRefGoogle Scholar
  29. 29.
    Rasu KK, Balaji D, Babu SM (2016) Photoluminescence properties of Eu3+:RbGd(WO4)2 red phosphors prepared by sol–gel method. J Lumin 170:825–834CrossRefGoogle Scholar
  30. 30.
    Jiang ZQ, Wang YH, Wang LS (2010) Enhanced yellow-to-orange emission of Si-doped Mg3Y2Ge3O12:Ce3+ garnet phosphors for warm white light-emitting diodes. J Electrochem Soc 157:J155–J158CrossRefGoogle Scholar
  31. 31.
    Xia ZG, Zhou J, Mao ZY (2013) Near UV-pumped green-emitting Na3(Y, Sc)Si3O9:Eu2+ phosphor for white-emitting diodes. J Mater Chem C 1:5917–5924CrossRefGoogle Scholar
  32. 32.
    Wang Q, Ci ZP, Zhu G, Xin SY, Zeng W, Que MD, Wang YH (2014) Multicolor bright Ln3+ (Ln = Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications. Opt Mater Express 4:142–154CrossRefGoogle Scholar
  33. 33.
    Zhang XW, Marathe A, Sohal S, Holtz M, Davis M, Hope-Weeks LJ, Chaudhuri J (2012) Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+. J Mater Chem 22:6485–6490CrossRefGoogle Scholar
  34. 34.
    Yadav R, Khan AF, Yadav A, Chander H, Haranath D, Gupta BK, Shanker V, Chawla S (2009) Intense red-emitting Y4Al2O9:Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel. Opt Express 17:22023–22030CrossRefGoogle Scholar
  35. 35.
    Li HL, Wang ZL, Xu SJ, Hao JH (2009) Improved performance of spherical BaWO4:Tb3+ phosphors for field-emission displays. J Electrochem Soc 156:J112–J116CrossRefGoogle Scholar
  36. 36.
    Yang LS, Li GS, Zhao ML, Zheng J, Guan XF, Li LP (2012) Preparation and morphology-sensitive luminescence properties of Eu3+-doped YVO4: a defect chemistry viewpoint of study. CrystEngComm 14:3227–3235CrossRefGoogle Scholar
  37. 37.
    Tian Y, Chen BJ, Hua RN, Sun JS, Cheng LH, Zhong HY, Li XP, Zhang JS, Zheng YF, Yu TT, Huang LB, Yu HQ (2011) Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3:Eu3+ phosphor. J Appl Phys 109:053511-1–053511-6Google Scholar
  38. 38.
    Wang ZH, Li JG, Zhu Q, Li XD, Sun XD (2016) Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into (Y1−xEux)PO4 nanophosphors and investigation of photoluminescence. Dalton Trans 45:5290–5299CrossRefGoogle Scholar
  39. 39.
    Blasse G (1986) Energy transfer between inequivalent Eu2+ ions. J Solid State Chem 62:207–211CrossRefGoogle Scholar
  40. 40.
    Liu WR, Huang CH, Wu CP, Chiu YC, Yeh YT, Chen TM (2011) High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes. J Mater Chem 21:6869–6874CrossRefGoogle Scholar
  41. 41.
    Van Uitert LG (1967) Characterization of energy transfer interactions between rare earth ions. J Electrochem Soc 114:1048–1053CrossRefGoogle Scholar
  42. 42.
    Hao RN, Meng QY, Liu W, Liu HL (2013) Synthesis and luminescent properties of Eu3+ doped Y2WO6 nanophosphors. J Rare Earths 31:864–870CrossRefGoogle Scholar
  43. 43.
    Pu YF, Weng HG, Cheng H, Kim SI, Seo HJ (2015) Synthesis and luminescence characterization of Eu3+-activated Na3La8V3O21 as a red-emitting phosphor. J Lumin 168:77–81CrossRefGoogle Scholar
  44. 44.
    Xiong FB, Han CY, Lin HF, Wang YP, Lin HY, Shen HX, Zhu WZ (2016) White light emission from novel host-sensitized single-phase Y2WO6:Ln3+ (Ln3+ = Eu3+, Dy3+) phosphors. Ceram Int 42:13841–13848CrossRefGoogle Scholar
  45. 45.
    Li HF, Zhao R, Jia YL, Sun WZ, Fu JP, Jiang LH, Zhang S, Pang R, Li CY (2014) Sr1.7Zn0.3CeO4:Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties. ACS Appl Mater Interfaces 6:3163–3169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Special Class for the Gifted YoungUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of PhysicsUniversity of Science and Technology of ChinaHefeiChina
  4. 4.Institute of Advanced Energy Technology and EquipmentHefei University of TechnologyHefeiChina
  5. 5.The Center of Physics Experiment, School of Physical SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations