Journal of Materials Science

, Volume 52, Issue 6, pp 3016–3027 | Cite as

A novel MWCNT/nanotubular TiO2(B) loaded with SnO2 nanocrystals ternary composite as anode material for lithium-ion batteries

  • Jiao Zheng
  • Daqian Ma
  • Xiangfeng Wu
  • Peng Dou
  • Zhenzhen Cao
  • Chao Wang
  • Xinhua Xu
Original Paper


A novel MWCNT/long nanotubular TiO2(B) loaded with SnO2 nanocrystals (SnO2NC/TiO2(B)NT/MWCNT) ternary composite has been prepared by two-step hydrothermal method and used as the anode material for the first time. In this work, the mechanical stirring improved the diffusion and surface reaction rates of reactants and promoted the appearance of longer intermediate TiO2(B) nanosheets, leading to the formation of TiO2(B) nanotubes with a length of ~9 μm. Among the SnO2NC/TiO2(B)NT/MWCNT composite, the wrapping and mechanical supporting functions of TiO2(B) nanotubes can effectively avoid the pulverization and aggregation of SnO2 nanocrystals (SnO2NC) in lithium-ion charging and discharging process. Moreover, the synergistic effects of nanotubular TiO2(B) coating layer and three-dimensional interconnected network structure composed of TiO2(B) nanotubes and MWCNT were taken to mitigate volume expansion of SnO2NC and improve the transport of lithium ion and electron in the network. Tested as anode materials, the SnO2NC/TiO2(B)NT/MWCNT composite maintained 211 mAh g−1 at 3000 mA g−1 after three testing processes with alternative current density of 200 and 3000 mA g−1 and could rebound to 338 mAh g−1 at a current density of 200 mA g−1, indicating an effective way to optimize electrochemical properties of SnO2 as anode material.


TiO2 SnO2 Anode Material Coulombic Efficiency Solid Electrolyte Interphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 51143009 and 51273145).

Supplementary material

10853_2016_578_MOESM1_ESM.doc (32 mb)
Supplementary material 1 (DOC 32735 kb)


  1. 1.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  3. 3.
    Ui K, Kawamura S, Kumagai N (2012) Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method. Electrochim Acta 76:383–388CrossRefGoogle Scholar
  4. 4.
    Jiang SH, Yue WB, Gao ZQ, Ren Y, Ma H, Zhao XH, Liu YL, Yang XJ (2013) Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries. J Mater Sci 48:3870–3876. doi: 10.1007/s10853-013-7189-9 CrossRefGoogle Scholar
  5. 5.
    Yin LX, Chai SM, Wang FF, Huang JF, Li JY, Liu CQ, Kong XG (2016) Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram Int 42:9433–9437CrossRefGoogle Scholar
  6. 6.
    Hu RZ, Zhang HY, Liu JW, Chen DC, Yang LC, Zhu M, Liu ML (2015) Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage. J Mater Chem A 3:15097–15107CrossRefGoogle Scholar
  7. 7.
    Aparnev AI, Afonina LI, Loginov AV, Uvarov NF (2016) Synthesis of nanocomposite materials based on cobalt-doped tin oxide and study of their physicochemical properties. Russ J Appl Chem 89:212–215CrossRefGoogle Scholar
  8. 8.
    Bhaskar A, Deepa M, Rao TN (2014) Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries. Nanoscale 6:10762–10771CrossRefGoogle Scholar
  9. 9.
    Cao ZZ, Yang HY, Dou P, Wang C, Zheng J, Xu XH (2016) Synthesis of three-dimensional hollow SnO2@ PPy nanotube arrays via template-assisted method and chemical vapor-phase polymerization as high performance anodes for lithium-ion batteries. Electrochim Acta 209:700–708CrossRefGoogle Scholar
  10. 10.
    Yang S, Yue WB, Zhu J, Ren Y, Yang XJ (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRefGoogle Scholar
  11. 11.
    Song HW, Li N, Cui H, Wang CX (2014) Monodisperse SnO2 nanocrystals functionalized multiwalled carbon nanotubes for large rate and long lifespan anode materials in lithium ion batteries. Electrochim Acta 120:46–51CrossRefGoogle Scholar
  12. 12.
    Nam S, Yang SJ, Lee SS, Kim J, Kang J, Oh JY, Park CR, Moon T, Lee KT, Park B (2015) Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon 85:289–298CrossRefGoogle Scholar
  13. 13.
    Tian QH, Tian Y, Zhang ZX, Yang L, Hirano S (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRefGoogle Scholar
  14. 14.
    Guo YG, Hu JS, Wan L (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRefGoogle Scholar
  15. 15.
    Ma JM, Zhang J, Wang SR, Wang QH, Jiao LF, Yang JQ, Duan XC, Liu ZF, Lian JB, Zheng WJ (2011) Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method. CrystEngComm 13:6077–6081CrossRefGoogle Scholar
  16. 16.
    Zhang PG, Zhang CY, Xie AJ, Li C, Song JM, Shen YH (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J Mater Sci 51:3448–3453. doi: 10.1007/s10853-015-9662-0 CrossRefGoogle Scholar
  17. 17.
    Tian QH, Zhang ZX, Yang L, Hirano S (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16CrossRefGoogle Scholar
  18. 18.
    Yan X, Li YJ, Li ML, Jin YC, Du F, Chen G, Wei YJ (2015) Ultrafast lithium storage in TiO2–bronze nanowires/N-doped graphene nanocomposites. J Mater Chem A 3:4180–4187CrossRefGoogle Scholar
  19. 19.
    Wang JF, Xie JJ, Jiang YM, Zhang JJ, Wang YG, Zhou ZF (2015) Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium ion batteries. J Mater Sci 50:6321–6328. doi: 10.1007/s10853-015-9172-0 CrossRefGoogle Scholar
  20. 20.
    Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203CrossRefGoogle Scholar
  21. 21.
    Dylla AG, Henkelman G, Stevenson KJ (2013) Lithium insertion in nanostructured TiO2(B) architectures. Acc Chem Res 46:1104–1112CrossRefGoogle Scholar
  22. 22.
    Takami N, Harada Y, Wasaki T, Hoshina K, Yoshida Y (2015) Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J Power Sources 273:923–930CrossRefGoogle Scholar
  23. 23.
    Madian M, Klose M, Jaumann T, Gebert A, Oswald S, Ismail N, Eychmuller A, Eckert J, Giebelerad L (2016) Anodically fabricated TiO2–SnO2 nanotubes and their application in lithium ion batteries. J Mater Chem A 4:5542–5552CrossRefGoogle Scholar
  24. 24.
    Wu HY, Hon MH, Kuan CY, Leu IC (2015) Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram Int 41:9527–9533CrossRefGoogle Scholar
  25. 25.
    Zhang DA, Wang Q, Wang Q, Sun J, Xing LL, Xue XY (2014) Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability. Mater Lett 128:295–298CrossRefGoogle Scholar
  26. 26.
    Yang ZX, Du GD, Guo ZP, Yu XB, Chen ZX, Guo TL, Zeng R (2011) Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage. Nanoscale 3:4440–4447CrossRefGoogle Scholar
  27. 27.
    Ji G, Ding B, Ma Y, Jim YL (2013) Nanostructured SnO2@TiO2 core-shell composites: a high-rate Li-ion anode material usable without conductive additives. Energy Technol 1:567–572CrossRefGoogle Scholar
  28. 28.
    Zhang PP, Zhu SS, He ZS, Wang K, Fan HQ, Zhong Y, Chang L, Shao HB, Wang JM, Zhang JQ, Cao CN (2016) Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. J Alloy Compd 674:1–8CrossRefGoogle Scholar
  29. 29.
    Chen YF, Du N, Zhang H, Yang DR (2015) Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J Alloy Compd 622:966–972CrossRefGoogle Scholar
  30. 30.
    Uysal M, Cetinkaya T, Alp A, Akbulut H (2015) Fabrication of Sn–Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: effects of duty cycle. Appl Surf Sci 334:80–86CrossRefGoogle Scholar
  31. 31.
    Yin YH, Zhang XT, Jia YJ, Cao ZX, Yang ST (2015) Facile synthesis of Fe2O3/MWCNT composites with improved cycling stability. RSC Adv 5:1447–1451CrossRefGoogle Scholar
  32. 32.
    Sun B, Huang K, Qi X, Wei XL, Zhong JX (2015) Rational construction of a functionalized V2O5 nanosphere/MWCNT layer-by-layer nanoarchitecture as cathode for enhanced performance of lithium-ion batteries. Adv Funct Mater 25:5633–5639CrossRefGoogle Scholar
  33. 33.
    Majid H, Ali AY, Mohammad JZM, Alexandre FL, Matthieu PP, Philippe C, Angélique L, Nathalie J (2015) Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites. J Mater Sci 50:6007–6020. doi: 10.1007/s10853-015-9148-0 CrossRefGoogle Scholar
  34. 34.
    Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824CrossRefGoogle Scholar
  35. 35.
    Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533CrossRefGoogle Scholar
  36. 36.
    Lin KZ, Xu YH, He GR, Wang XL (2006) The kinetic and thermodynamic analysis of Li ion in multi-walled carbon nanotubes. Mater Chem Phys 99:190–196CrossRefGoogle Scholar
  37. 37.
    Szabo DV, Kilibarda G, Schlabach S, Trouillet V, Bruns M (2012) Structural and chemical characterization of SnO2-based nanoparticles as electrode material in Li-ion batteries. J Mater Sci 47:4383–4391. doi: 10.1007/s10853-012-6292-7 CrossRefGoogle Scholar
  38. 38.
    Wan N, Lu X, Wang YS, Zhang WF, Bai Y, Hu YS, Dai S (2016) Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Sci Rep 6:18976. doi: 10.1038/srep18978 CrossRefGoogle Scholar
  39. 39.
    Giannuzzi R, Manca M, Marco LD, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G (2014) Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6:1933–1943CrossRefGoogle Scholar
  40. 40.
    Jiang YZ, Li Y, Zhou P, Yu SL, Sun WP, Dou SX (2015) Enhanced reaction kinetics and structure integrity of Ni/SnO2 nanocluster toward high-performance lithium storage. ACS Appl Mater Interfaces 7:26367–26373CrossRefGoogle Scholar
  41. 41.
    Liu XW, Zhong XW, Yang ZZ, Pan FS, Gu L, Yu Y (2015) Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries. Electrochim Acta 152:178–186CrossRefGoogle Scholar
  42. 42.
    Ren GF, Hoque NFM, Liu JW, Warzywoda J, Fan ZY (2016) Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy 21:162–171CrossRefGoogle Scholar
  43. 43.
    Torrente ML, Lapkin AA, Chadwick D (2010) Synthesis of high aspect ratio titanate nanotubes. J Mater Chem 20:6484–6489CrossRefGoogle Scholar
  44. 44.
    Itagaki M, Honda K, Hoshi Y, Shitanda I (2015) In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. J Electroanal Chem 737:78–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Composite and Functional MaterialsTianjinPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringShijiazhuang Tiedao UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations