Skip to main content
Log in

The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the effects of filler geometry on the electrical conductivity and electromagnetic interference (EMI) shielding properties of poly(trimethylene terephthalate) (PTT) composites filled with graphene nanosheets (GNSs), carbon nanotubes (CNTs), and GNS–CNT hybrid nanofillers have been investigated. The GNSs, CNTs, and hybrid GNS–CNT were well dispersed in the PTT matrix using a simple coagulation process. GNSs were prepared from graphene oxide (GO) through hydrazine reduction, and thermal reduction of GO at two different temperatures of 1050 and 1500 °C. PTT filled with different aspect ratios and oxygen functional groups of GNS were also prepared in order to compare the electrical conductivity and EMI shielding properties. The aspect ratios of GNSs and CNTs were estimated by using an ellipsoid model. Percolation scaling laws were applied to the magnitudes of conductivity to reveal the percolation network and filler dispersion. The percolation exponent of the PTT/GNS composites was larger than that of the PTT/CNT composites. The percolated filler–filler network at which the percolation exponent changed was correlated with the filler geometric structure. GNS–CNT hybrid nanofillers formed a complex double brush structure in the PTT/GNS–CNT composites. The geometric structure, aspect ratio, and intrinsic conductivity of carbon nanofillers affected the electrical percolation threshold and EMI shielding efficiency of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  2. Garboczi E, Snyder K, Douglas J, Thorpe M (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52(1):819–828. doi:10.1103/PhysRevE.52.819

    Article  Google Scholar 

  3. Heaney MB (1995) Measurement and interpretation of nonuniversal critical exponents in disordered conductor–insulator composites. Phys Rev B 52(17):12477–12480. doi:10.1103/PhysRevB.52.12477

    Article  Google Scholar 

  4. Grossiord N, Loos J, van Laake L, Maugey M, Zakri C, Koning CE, Hart AJ (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18(20):3226–3234. doi:10.1002/adfm.200800528

    Article  Google Scholar 

  5. Ploehn HJ, Liu C (2006) Quantitative analysis of montmorillonite platelet size by atomic force microscopy. Ind Eng Chem Res 45(21):7025–7034. doi:10.1021/ie051392r

    Article  Google Scholar 

  6. Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39(12):2329–2335. doi:10.1016/j.eurpolymj.2003.08.005

    Article  Google Scholar 

  7. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15):3797–3809. doi:10.1016/j.polymer.2009.05.038

    Article  Google Scholar 

  8. Shante VK, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20(85):325–357. doi:10.1080/00018737100101261

    Article  Google Scholar 

  9. Xie SH, Liu YY, Li JY (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 92(24):243121–243123. doi:10.1063/1.2949074

    Article  Google Scholar 

  10. Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R 74(7):211–232. doi:10.1016/j.mser.2013.06.001

    Article  Google Scholar 

  11. Zhang H-B, Yan Q, Zheng W-G, He Z, Yu Z-Z (2011) Tough graphene—polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924. doi:10.1021/am200021v

    Article  Google Scholar 

  12. Sreeprasad TS, Rodriguez AA, Colston J, Graham A, Shishkin E, Pallem V, Berry V (2013) Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett 13(4):1757–1763. doi:10.1021/nl4003443

    Article  Google Scholar 

  13. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25. doi:10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  14. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710. doi:10.1038/nature07719

    Article  Google Scholar 

  15. Yang R-B, Kuo W-S, Lai H-C (2014) Effect of carbon nanotube dispersion on the complex permittivity and absorption of nanocomposites in 2-18 GHz ranges. J Appl Polym Sci 131(21):40963–40969. doi:10.1002/app.40963

    Article  Google Scholar 

  16. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater 27(6):2100–2106. doi:10.1021/cm504550e

    Article  Google Scholar 

  17. Kotsilkova R, Ivanov E, Bychanok D, Paddubskaya A, Demidenko M, Macutkevic J, Maksimenko S, Kuzhir P (2015) Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites. Compos Sci Technol 106:85–92. doi:10.1016/j.compscitech.2014.11.004

    Article  Google Scholar 

  18. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, Ji G-Y, Yu Z-Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196. doi:10.1016/j.polymer.2010.01.027

    Article  Google Scholar 

  19. Zhang H-B, Zheng W-G, Yan Q, Jiang Z-G, Yu Z-Z (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50(14):5117–5125. doi:10.1016/j.carbon.2012.06.052

    Article  Google Scholar 

  20. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. doi:10.1038/nature04969

    Article  Google Scholar 

  21. Lin J-H, Lin Z-I, Pan Y-J, Chen C-K, Huang C-L, Huang C-H, Lou C-W (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211. doi:10.1002/mame.201500314

    Article  Google Scholar 

  22. Huang C-L, Wang C (2011) Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes. Carbon 49(7):2334–2344. doi:10.1016/j.carbon.2011.01.065

    Article  Google Scholar 

  23. Shen JW, Chen XM, Huang WY (2003) Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation. J Appl Polym Sci 88(7):1864–1869. doi:10.1002/app.11892

    Article  Google Scholar 

  24. Huang C-L, Wang Y-J, Fan Y-C (2016) Morphological features and crystallization behavior of the conductive composites of poly(trimethylene terephthalate)/graphene nanosheets. J Appl Polym Sc 133(19):43419–43432. doi:10.1002/app.43419

    Article  Google Scholar 

  25. Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH (2010) Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 21(10):105702. doi:10.1088/0957-4484/21/10/105702

    Article  Google Scholar 

  26. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744. doi:10.1002/adma.200800401

    Article  Google Scholar 

  27. Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663. doi:10.1016/j.msea.2006.08.145

    Article  Google Scholar 

  28. Zhang J (2004) Study of poly (trimethylene terephthalate) as an engineering thermoplastics material. J Appl Polym Sci 91(3):1657–1666. doi:10.1002/app.13322

    Article  Google Scholar 

  29. Chen T-K, Tien Y-I, Wei K-H (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41(4):1345–1353. doi:10.1016/S0032-3861(99)00280-3

    Article  Google Scholar 

  30. Launay A, Thominette F, Verdu J (1999) Water sorption in amorphous poly (ethylene terephthalate). J Appl Polym Sci 73(7):1131–1137. doi:10.1002/(SICI)1097-4628(19990815)73:7<1131:AID-APP4>3.0.CO;2-U

    Article  Google Scholar 

  31. Li M, Jeong YG (2011) Preparation and characterization of high-performance poly(trimethylene terephthalate) nanocomposites reinforced with exfoliated graphite. Macromol Mater Eng 296(2):159–167. doi:10.1002/mame.201000295

    Article  Google Scholar 

  32. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568. doi:10.1016/j.compscitech.2011.06.014

    Article  Google Scholar 

  33. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48(13):3834–3839. doi:10.1016/j.carbon.2010.06.048

    Article  Google Scholar 

  34. Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem:10815–10837. doi:10.1002/9780470027318.a5606

  35. Poljanšek I, Krajnc M (2005) Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chim Slov 52(3):238–244

    Google Scholar 

  36. Fuente E, Menendez J, Diez M, Suarez D, Montes-Moran M (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107(26):6350–6359. doi:10.1021/jp100603h

    Article  Google Scholar 

  37. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107(16):3712–3718. doi:10.1021/jp027500u

    Article  Google Scholar 

  38. Fernandez-Merino M, Guardia L, Paredes J, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon J (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114(14):6426–6432. doi:10.1021/jp100603h

    Article  Google Scholar 

  39. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5):055705. doi:10.1088/0957-4484/22/5/055705

    Article  Google Scholar 

  40. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673. doi:10.1021/nl061420a

    Article  Google Scholar 

  41. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman Spectrum of graphene and graphene layers. Phys Rev Lett 97:187401–187404. doi:10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  42. Botas C, Álvarez P, Blanco C, Santamaría R, Granda M, Gutiérrez MD, Rodríguez-Reinoso F, Menéndez R (2013) Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide. Carbon 52:476–485. doi:10.1016/j.carbon.2012.09.059

    Article  Google Scholar 

  43. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett 7(2):238–242. doi:10.1021/nl061702a

    Article  Google Scholar 

  44. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274. doi:10.1038/nnano.2008.83

    Article  Google Scholar 

  45. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539. doi:10.1021/jp060936f

    Article  Google Scholar 

  46. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404. doi:10.1021/cm0630800

    Article  Google Scholar 

  47. Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842. doi:10.1021/jp909284g

    Article  Google Scholar 

  48. Qi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, Koratkar N (2011) Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl Mater Interfaces 3(8):3130–3133. doi:10.1021/am200628c

    Article  Google Scholar 

  49. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597. doi:10.1021/nl803798y

    Article  Google Scholar 

  50. Fan P, Wang L, Yang J, Chen F, Zhong M (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23(36):365702. doi:10.1088/0957-4484/23/36/365702

    Article  Google Scholar 

  51. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9(10):3460–3462. doi:10.1021/nl9016623

    Article  Google Scholar 

  52. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47(1):480–488. doi:10.1016/j.polymer.2005.11.028

    Article  Google Scholar 

  53. Li Q, Li Z, Chen M, Fang Y (2009) Real-time study of graphene’s phase transition in polymer matrices. Nano Lett 9(5):2129–2132. doi:10.1021/nl9016623

    Article  Google Scholar 

  54. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450. doi:10.1021/cm100477v

    Article  Google Scholar 

  55. Zhang M, Li D-J, Wu D-F, Yan C-H, Lu P, Qiu G-M (2008) Poly(ethylene terephthalate)/expanded graphite conductive composites: structure, properties, and transport behavior. J Appl Polym Sci 108(3):1482–1489. doi:10.1002/app.27745

    Article  Google Scholar 

  56. Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220. doi:10.1021/nn1019626

    Article  Google Scholar 

  57. Tang Z, Kang H, Shen Z, Guo B, Zhang L, Jia D (2012) Grafting of polyester onto graphene for electrically and thermally conductive composites. Macromolecules 45(8):3444–3451. doi:10.1021/ma300450t

    Article  Google Scholar 

  58. Balberg I (1985) Universal percolation-threshold limits in the continuum. Phys Rev B 31(6):4053–4055. doi:10.1103/PhysRevB.31.4053

    Article  Google Scholar 

  59. Balberg I (1987) Tunneling and nonuniversal conductivity in composite materials. Phys Rev Lett 59(12):1305–1308. doi:10.1103/PhysRevLett.59.1305

    Article  Google Scholar 

  60. Wang C, Chiu Y-C, Huang C-L (2015) Electrical percolation and crysgtallization kinetics of semi-crystalline polystyrene composites filled with graphene. Mater Chem Phys 164:206–213. doi:10.1016/j.matchemphys.2015.08.046

    Article  Google Scholar 

  61. Balberg I (1998) Limits on the continuum-percolation transport exponents. Phys Rev B 57(21):13351–13354. doi:10.1103/PhysRevB.57.13351

    Article  Google Scholar 

  62. Grimaldi C, Balberg I (2006) Tunneling and nonuniversality in continuum percolation systems. Phys Rev Lett 96(6):066602–066604. doi:10.1103/PhysRevLett.96.066602

    Article  Google Scholar 

  63. Vionnet-Menot S, Grimaldi C, Maeder T, Strässler S, Ryser P (2005) Tunneling-percolation origin of nonuniversality: theory and experiments. Phys Rev B 71(6):064201–064212. doi:10.1103/PhysRevB.71.064201

    Article  Google Scholar 

  64. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19(16):2577–2583. doi:10.1002/adfm.200900166

    Article  Google Scholar 

  65. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399. doi:10.1021/nl200758b

    Article  Google Scholar 

  66. Srimoaon P, Dangseeyun N, Supaphol P (2004) Multiple melting behavior in isothermally crystallized poly(trimethylene terephthalate). Eur Polym J 40(3):599–608. doi:10.1016/j.eurpolymj.2003.11.003

    Article  Google Scholar 

  67. Ho R-M, Ke K-Z, Chen M (2000) Crystal structure and banded spherulite of poly (trimethylene terephthalate). Macromolecules 33(20):7529–7537. doi:10.1021/ma000210w

    Article  Google Scholar 

  68. Huang C, Bai H, Xiu H, Zhang Q, Fu Q (2014) Matrix crystallization induced simultaneous enhancement of electrical conductivity and mechanical performance in poly(l-lactide)/multiwalled carbon nanotubes (PLLA/MWCNTs) nanocomposites. Compos Sci Technol 102:20–27. doi:10.1016/j.compscitech.2014.07.016

    Article  Google Scholar 

  69. Huang C-L, Wang C (2011) Polymorphism and transcrystallization of syndiotactic polystyrene composites filled with carbon nanotubes. Eur Polym J 47(11):2087–2096. doi:10.1016/j.eurpolymj.2011.08.006

    Article  Google Scholar 

  70. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898. doi:10.1002/mame.201100035

    Article  Google Scholar 

  71. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746. doi:10.1016/j.carbon.2009.02.030

    Article  Google Scholar 

  72. Bhattacharya SK (1986) Metal filled polymers, vol 11. CRC Press, Boca Raton

    Google Scholar 

  73. Chen Y-J, Dung ND, Li Y-A, Yip M-C, Hsu W-K, Tai N-H (2011) Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites. Diam Relat Mater 20(8):1183–1187. doi:10.1016/j.diamond.2011.06.007

    Article  Google Scholar 

  74. Yuan B, Yu L, Sheng L, An K, Zhao X (2012) Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J Phys D 45(23):235106–235108. doi:10.1088/0022-3727/45/23/235108

    Article  Google Scholar 

  75. Wang J, Xiang C, Liu Q, Pan Y, Guo J (2008) Ordered mesoporous carbon/fused silica composites. Adv Funct Mater 18(19):2995–3002. doi:10.1002/adfm.200701406

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of Taiwan (ROC) for the research Grant (NSC 101-2218-E-035-006-) that supported this work. The authors also appreciate the Precision Instrument Support Center of Feng Chia University and Prof. C. Wang in NCKU for providing the fabrication and measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Lin Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CL., Wang, YJ., Fan, YC. et al. The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study. J Mater Sci 52, 2560–2580 (2017). https://doi.org/10.1007/s10853-016-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0549-5

Keywords

Navigation